针对中国首次自主火星探测任务——“天问一号”行星际转移及环绕飞行过程面临的器–地数据传输延时长、飞行过程指向约束多、自主可靠要求高等难题,提出了基于火星光学目标特性测量的自主导航、推力方向补偿的速度矢量控制以及多目标...针对中国首次自主火星探测任务——“天问一号”行星际转移及环绕飞行过程面临的器–地数据传输延时长、飞行过程指向约束多、自主可靠要求高等难题,提出了基于火星光学目标特性测量的自主导航、推力方向补偿的速度矢量控制以及多目标指向基准优化的角动量管理方法。通过对火星时变目标特性的自适应边缘提取和基于椭球模型的边缘精确拟合,获得目标高精度导航观测信息,实现近火导航精度优于100 km、环火导航精度优于2 km;采用基于加速度计测量的推力方向实时估计及姿态前馈补偿,使制动捕获控制精度达到mm/s量级;结合多目标指向约束,以干扰力矩全局最优为目标进行姿态基准优化设计,保障超过30天无地面支持下的自主飞行控制。将其应用于“天问一号”环绕器制导、导航与控制(Guidance,Navigation and Control,GNC)分系统中,“天问一号”在轨飞行结果表明,所提方法能够满足星际飞行自主控制和自主管理的约束,为后续深空探测型号任务提供重要参考。展开更多
The powered-descent landing(PDL)phase of the Tianwen-1 mission began with composite backshell–parachute(CBP)separation and ended with landing-rover touchdown.The main tasks of this phase were to reduce the velocity o...The powered-descent landing(PDL)phase of the Tianwen-1 mission began with composite backshell–parachute(CBP)separation and ended with landing-rover touchdown.The main tasks of this phase were to reduce the velocity of the lander,perform the avoidance maneuver,and guarantee a soft touchdown.The PDL phase overcame many challenges:performing the divert maneuver to avoid collision with the CBP while simultaneously avoiding large-scale hazards;slowing the descent from approximately 95 to 0 m/s;performing the precise hazard-avoidance maneuver;and placing the lander gently and safely on the surface of Mars.The architecture and algorithms of the guidance,navigation,and control system for the PDL phase were designed;its execution resulted in Tianwen-1’s successful touchdown in the morning of 15 May 2021.Consequently,the Tianwen-1 mission achieved a historic autonomous landing with simultaneous hazard and CBP avoidance.展开更多
The design of mini-missiles(MMs)presents several novel challenges.The stringent mission requirement to reach a target with a certain precision imposes a high guidance precision.The miniaturization of the size of MMs m...The design of mini-missiles(MMs)presents several novel challenges.The stringent mission requirement to reach a target with a certain precision imposes a high guidance precision.The miniaturization of the size of MMs makes the design of the guidance,navigation,and control(GNC)have a larger-thanbefore impact on the main-body design(shape,motor,and layout design)and its design objective,i.e.,flight performance.Pursuing a trade-off between flight performance and guidance precision,all the relevant interactions have to be accounted for in the design of the main body and the GNC system.Herein,a multi-objective and multidisciplinary design optimization(MDO)is proposed.Disciplines pertinent to motor,aerodynamics,layout,trajectory,flight dynamics,control,and guidance are included in the proposed MDO framework.The optimization problem seeks to maximize the range and minimize the guidance error.The problem is solved by using the nondominated sorting genetic algorithm II.An optimum design that balances a longer range with a smaller guidance error is obtained.Finally,lessons learned about the design of the MM and insights into the trade-off between flight performance and guidance precision are given by comparing the optimum design to a design provided by the traditional approach.展开更多
On May 15,2021,the Tianwen-1 lander successfully touched down on the surface of Mars.To ensure the success of the landing mission,an end-to-end Mars entry,descent,and landing(EDL)simulator is developed to assess the g...On May 15,2021,the Tianwen-1 lander successfully touched down on the surface of Mars.To ensure the success of the landing mission,an end-to-end Mars entry,descent,and landing(EDL)simulator is developed to assess the guidance,navigation,and control(GNC)system performance,and determine the critical operation and lander parameters.The high-fidelity models of the Mars atmosphere,parachute,and lander system that are incorporated into the simulator are described.Using the developed simulator,simulations of the Tianwen-1 lander EDL are performed.The results indicate that the simulator is valid,and the GNC system of the Tianwen-1 lander exhibits excellent performance.展开更多
The Japanese interplanetary probe Hayabusa2 was launched on December 3,2014 and the probe arrived at the vicinity of asteroid 162173 Ryugu on June 27,2018.During its 1.4 years of asteroid proximity phase,the probe suc...The Japanese interplanetary probe Hayabusa2 was launched on December 3,2014 and the probe arrived at the vicinity of asteroid 162173 Ryugu on June 27,2018.During its 1.4 years of asteroid proximity phase,the probe successfully accomplished numbers of record-breaking achievements including two touchdowns and one artificial cratering experiment,which are highly expected to have secured surface and subsurface samples from the asteroid inside its sample container for the first time in history.The Hayabusa2 spacecraft was designed not to orbit but to hover above the asteroid along the sub Earth line.This orbital and geometrical configuration allows the spacecraft to utilize its high-gain antennas for telecommunication with the ground station on Earth while pointing its scientific observation and navigation sensors at the asteroid.This paper focuses on the regular station-keeping operation of Hayabusa2,which is called“home position”(HP)-keeping operation.First,together with the spacecraft design,an operation scheme called HP navigation(HPNAV),which includes a daily trajectory control and scientific observations as regular activities,is introduced.Following the description on the guidance,navigation,and control design as well as the framework of optical and radiometric navigation,the results of the HP-keeping operation including trajectory estimation and delta-V planning during the entire asteroid proximity phase are summarized and evaluated as a first report.Consequently,this paper states that the HP.keeping operation in the framework of HPNAV had succeeded without critical incidents,and the number of trajectory control delta-V was planned fficiently throughout the period.展开更多
The asteroid explorer Hayabusa2 carries multiple rovers and separates them to land on an asteroid surface.One of these rovers,called MASCOT,was developed under the international cooperation between the Deutsches Zentr...The asteroid explorer Hayabusa2 carries multiple rovers and separates them to land on an asteroid surface.One of these rovers,called MASCOT,was developed under the international cooperation between the Deutsches Zentrum f¨ur Luft-und Raumfahrt and the Centre National d’Etudes Spatiales.This rover was designed to be separated to land and perform several missions on an asteroid surface.To support these missions,the mother ship Hayabusa2 must separate this rover at a low altitude of approximately 50 m and hover at approximately 3 km after separation to achieve are liable communication link with MASCOT.Because the on-board guidance,navigation,and control(GNC)does not have an autonomous hovering function,this hovering operation is performed by ground-based control.This paper introduces the GNC operation scheme for this hovering operation and reports on its flight results.展开更多
为了实现复杂航天器导航、制导与控制(guidance navigation and control,GNC)系统的快速设计与仿真验证,加快GNC系统从算法设计到产品实现的过程,解决数字仿真与实物仿真一致性的问题,提出了一种基于星载软件在环的GNC快速原型仿真系统...为了实现复杂航天器导航、制导与控制(guidance navigation and control,GNC)系统的快速设计与仿真验证,加快GNC系统从算法设计到产品实现的过程,解决数字仿真与实物仿真一致性的问题,提出了一种基于星载软件在环的GNC快速原型仿真系统。通过虚拟GNC计算机处理器内核和硬件接口的方式实现星载GNC计算机原型,解决了快速原型仿真系统GNC软件代码与实物星载计算机软件代码的一致性;利用Simulink/Matlab进行航天器动力学/运动学建模和GNC系统测量部件及执行部件的数字化建模,基于实时扩展(real time extension,RTX)系统和功能硬件板卡实现数字化模型与实物的转化,解决数字仿真与实物仿真GNC系统内部接口特性、时序和逻辑一致性的问题。应用实例表明,基于星载软件在环的GNC快速原型仿真系统仿真数据与GNC半物理仿真系统仿真数据高度一致,证实了仿真系统设计的有效性;同时基于该仿真系统可以实现GNC系统软件、算法和单机产品的并行开发,缩短系统研制周期。展开更多
文摘针对中国首次自主火星探测任务——“天问一号”行星际转移及环绕飞行过程面临的器–地数据传输延时长、飞行过程指向约束多、自主可靠要求高等难题,提出了基于火星光学目标特性测量的自主导航、推力方向补偿的速度矢量控制以及多目标指向基准优化的角动量管理方法。通过对火星时变目标特性的自适应边缘提取和基于椭球模型的边缘精确拟合,获得目标高精度导航观测信息,实现近火导航精度优于100 km、环火导航精度优于2 km;采用基于加速度计测量的推力方向实时估计及姿态前馈补偿,使制动捕获控制精度达到mm/s量级;结合多目标指向约束,以干扰力矩全局最优为目标进行姿态基准优化设计,保障超过30天无地面支持下的自主飞行控制。将其应用于“天问一号”环绕器制导、导航与控制(Guidance,Navigation and Control,GNC)分系统中,“天问一号”在轨飞行结果表明,所提方法能够满足星际飞行自主控制和自主管理的约束,为后续深空探测型号任务提供重要参考。
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.61673057 and 61803028)and the Civil Aerospace Advance Research Project.
文摘The powered-descent landing(PDL)phase of the Tianwen-1 mission began with composite backshell–parachute(CBP)separation and ended with landing-rover touchdown.The main tasks of this phase were to reduce the velocity of the lander,perform the avoidance maneuver,and guarantee a soft touchdown.The PDL phase overcame many challenges:performing the divert maneuver to avoid collision with the CBP while simultaneously avoiding large-scale hazards;slowing the descent from approximately 95 to 0 m/s;performing the precise hazard-avoidance maneuver;and placing the lander gently and safely on the surface of Mars.The architecture and algorithms of the guidance,navigation,and control system for the PDL phase were designed;its execution resulted in Tianwen-1’s successful touchdown in the morning of 15 May 2021.Consequently,the Tianwen-1 mission achieved a historic autonomous landing with simultaneous hazard and CBP avoidance.
文摘The design of mini-missiles(MMs)presents several novel challenges.The stringent mission requirement to reach a target with a certain precision imposes a high guidance precision.The miniaturization of the size of MMs makes the design of the guidance,navigation,and control(GNC)have a larger-thanbefore impact on the main-body design(shape,motor,and layout design)and its design objective,i.e.,flight performance.Pursuing a trade-off between flight performance and guidance precision,all the relevant interactions have to be accounted for in the design of the main body and the GNC system.Herein,a multi-objective and multidisciplinary design optimization(MDO)is proposed.Disciplines pertinent to motor,aerodynamics,layout,trajectory,flight dynamics,control,and guidance are included in the proposed MDO framework.The optimization problem seeks to maximize the range and minimize the guidance error.The problem is solved by using the nondominated sorting genetic algorithm II.An optimum design that balances a longer range with a smaller guidance error is obtained.Finally,lessons learned about the design of the MM and insights into the trade-off between flight performance and guidance precision are given by comparing the optimum design to a design provided by the traditional approach.
基金This work was supported by the National Natural Science Foundation of China(No.61803028)and Civil Aerospace Advance Research Project.
文摘On May 15,2021,the Tianwen-1 lander successfully touched down on the surface of Mars.To ensure the success of the landing mission,an end-to-end Mars entry,descent,and landing(EDL)simulator is developed to assess the guidance,navigation,and control(GNC)system performance,and determine the critical operation and lander parameters.The high-fidelity models of the Mars atmosphere,parachute,and lander system that are incorporated into the simulator are described.Using the developed simulator,simulations of the Tianwen-1 lander EDL are performed.The results indicate that the simulator is valid,and the GNC system of the Tianwen-1 lander exhibits excellent performance.
文摘The Japanese interplanetary probe Hayabusa2 was launched on December 3,2014 and the probe arrived at the vicinity of asteroid 162173 Ryugu on June 27,2018.During its 1.4 years of asteroid proximity phase,the probe successfully accomplished numbers of record-breaking achievements including two touchdowns and one artificial cratering experiment,which are highly expected to have secured surface and subsurface samples from the asteroid inside its sample container for the first time in history.The Hayabusa2 spacecraft was designed not to orbit but to hover above the asteroid along the sub Earth line.This orbital and geometrical configuration allows the spacecraft to utilize its high-gain antennas for telecommunication with the ground station on Earth while pointing its scientific observation and navigation sensors at the asteroid.This paper focuses on the regular station-keeping operation of Hayabusa2,which is called“home position”(HP)-keeping operation.First,together with the spacecraft design,an operation scheme called HP navigation(HPNAV),which includes a daily trajectory control and scientific observations as regular activities,is introduced.Following the description on the guidance,navigation,and control design as well as the framework of optical and radiometric navigation,the results of the HP-keeping operation including trajectory estimation and delta-V planning during the entire asteroid proximity phase are summarized and evaluated as a first report.Consequently,this paper states that the HP.keeping operation in the framework of HPNAV had succeeded without critical incidents,and the number of trajectory control delta-V was planned fficiently throughout the period.
文摘The asteroid explorer Hayabusa2 carries multiple rovers and separates them to land on an asteroid surface.One of these rovers,called MASCOT,was developed under the international cooperation between the Deutsches Zentrum f¨ur Luft-und Raumfahrt and the Centre National d’Etudes Spatiales.This rover was designed to be separated to land and perform several missions on an asteroid surface.To support these missions,the mother ship Hayabusa2 must separate this rover at a low altitude of approximately 50 m and hover at approximately 3 km after separation to achieve are liable communication link with MASCOT.Because the on-board guidance,navigation,and control(GNC)does not have an autonomous hovering function,this hovering operation is performed by ground-based control.This paper introduces the GNC operation scheme for this hovering operation and reports on its flight results.
文摘为了实现复杂航天器导航、制导与控制(guidance navigation and control,GNC)系统的快速设计与仿真验证,加快GNC系统从算法设计到产品实现的过程,解决数字仿真与实物仿真一致性的问题,提出了一种基于星载软件在环的GNC快速原型仿真系统。通过虚拟GNC计算机处理器内核和硬件接口的方式实现星载GNC计算机原型,解决了快速原型仿真系统GNC软件代码与实物星载计算机软件代码的一致性;利用Simulink/Matlab进行航天器动力学/运动学建模和GNC系统测量部件及执行部件的数字化建模,基于实时扩展(real time extension,RTX)系统和功能硬件板卡实现数字化模型与实物的转化,解决数字仿真与实物仿真GNC系统内部接口特性、时序和逻辑一致性的问题。应用实例表明,基于星载软件在环的GNC快速原型仿真系统仿真数据与GNC半物理仿真系统仿真数据高度一致,证实了仿真系统设计的有效性;同时基于该仿真系统可以实现GNC系统软件、算法和单机产品的并行开发,缩短系统研制周期。