A detailed analysis has showed that the quantum secret sharing protocol based on the Grover algorithm (Phys Rev A, 2003, 68: 022306) is insecure. A dishonest receiver may obtain the full information without being dete...A detailed analysis has showed that the quantum secret sharing protocol based on the Grover algorithm (Phys Rev A, 2003, 68: 022306) is insecure. A dishonest receiver may obtain the full information without being detected. A quantum secret-sharing protocol is presents here, which mends the security loophole of the original secret-sharing protocol, and doubles the information capacity.展开更多
Maximum frequent pattern generation from a large database of transactions and items for association rule mining is an important research topic in data mining. Association rule mining aims to discover interesting corre...Maximum frequent pattern generation from a large database of transactions and items for association rule mining is an important research topic in data mining. Association rule mining aims to discover interesting correlations, frequent patterns, associations, or causal structures between items hidden in a large database. By exploiting quantum computing, we propose an efficient quantum search algorithm design to discover the maximum frequent patterns. We modified Grover’s search algorithm so that a subspace of arbitrary symmetric states is used instead of the whole search space. We presented a novel quantum oracle design that employs a quantum counter to count the maximum frequent items and a quantum comparator to check with a minimum support threshold. The proposed derived algorithm increases the rate of the correct solutions since the search is only in a subspace. Furthermore, our algorithm significantly scales and optimizes the required number of qubits in design, which directly reflected positively on the performance. Our proposed design can accommodate more transactions and items and still have a good performance with a small number of qubits.展开更多
为探究多比特量子算法在量子芯片和模拟器中的实现现状,分别在IBM量子芯片和模拟器上运行Grover搜索算法、量子随机行走算法以及量子傅里叶变换算法。针对2 bit Grover搜索算法和2 bit量子随机行走算法,分析测量次数对运行结果的影响并...为探究多比特量子算法在量子芯片和模拟器中的实现现状,分别在IBM量子芯片和模拟器上运行Grover搜索算法、量子随机行走算法以及量子傅里叶变换算法。针对2 bit Grover搜索算法和2 bit量子随机行走算法,分析测量次数对运行结果的影响并选用最高可模拟次数对量子芯片和模拟器的运算结果进行比对。设计并运行5 bit量子傅里叶变换算法和3 bit Grover搜索算法,分别采用IBM Q模拟器进行最高次数的模拟。实验结果表明,量子芯片测试结果并没有随测量次数的增加而优化,模拟器计算结果的准确度明显优于量子芯片。展开更多
In order to improve the attack efficiency of the New FORK-256 function, an algorithm based on Grover's quantum search algorithm and birthday attack is proposed. In this algorithm, finding a collision for arbitrary...In order to improve the attack efficiency of the New FORK-256 function, an algorithm based on Grover's quantum search algorithm and birthday attack is proposed. In this algorithm, finding a collision for arbitrary hash function only needs O(2m/3) expected evaluations, where m is the size of hash space value. It is proved that the algorithm can obviously improve the attack efficiency for only needing O(2 74.7) expected evaluations, and this is more efficient than any known classical algorithm, and the consumed space of the algorithm equals the evaluation.展开更多
We propose a scheme for implementing the Grover search algorithm with two superconducting quantum interference devices (SQUIDs) in a cavity. Our scheme only requires single resonant interaction of the SQUID-cavity s...We propose a scheme for implementing the Grover search algorithm with two superconducting quantum interference devices (SQUIDs) in a cavity. Our scheme only requires single resonant interaction of the SQUID-cavity system and the required interaction time is very short. The simplicity of the process and the reduction of the interaction time are important for restraining decoherence.展开更多
Two schemes for the implementation of the two-qubit Grover search algorithm in the ion trap system are proposed. These schemes might be experimentally realizable with presently available techniques. The experimental i...Two schemes for the implementation of the two-qubit Grover search algorithm in the ion trap system are proposed. These schemes might be experimentally realizable with presently available techniques. The experimental implementation of the schemes would be an important step toward more complex quantum computation in the ion trap system.展开更多
基金supported by the National Natural Science Foundation of China (GrantNos. 10775076 and 60635040)the National Basic Research Program of China (Grant No. 2006CB921106)the SRFPD Program of Education Ministry of China
文摘A detailed analysis has showed that the quantum secret sharing protocol based on the Grover algorithm (Phys Rev A, 2003, 68: 022306) is insecure. A dishonest receiver may obtain the full information without being detected. A quantum secret-sharing protocol is presents here, which mends the security loophole of the original secret-sharing protocol, and doubles the information capacity.
基金Supported by National Natural Science Foundation of China under Grant Nos.60073039 60273080 (国家自然科学基金)+1 种基金 the Science and Technology Development Program of Jilin Provience of China under Grant No.20020306 (吉林省科技发展计划) the Foundation
文摘Maximum frequent pattern generation from a large database of transactions and items for association rule mining is an important research topic in data mining. Association rule mining aims to discover interesting correlations, frequent patterns, associations, or causal structures between items hidden in a large database. By exploiting quantum computing, we propose an efficient quantum search algorithm design to discover the maximum frequent patterns. We modified Grover’s search algorithm so that a subspace of arbitrary symmetric states is used instead of the whole search space. We presented a novel quantum oracle design that employs a quantum counter to count the maximum frequent items and a quantum comparator to check with a minimum support threshold. The proposed derived algorithm increases the rate of the correct solutions since the search is only in a subspace. Furthermore, our algorithm significantly scales and optimizes the required number of qubits in design, which directly reflected positively on the performance. Our proposed design can accommodate more transactions and items and still have a good performance with a small number of qubits.
文摘为探究多比特量子算法在量子芯片和模拟器中的实现现状,分别在IBM量子芯片和模拟器上运行Grover搜索算法、量子随机行走算法以及量子傅里叶变换算法。针对2 bit Grover搜索算法和2 bit量子随机行走算法,分析测量次数对运行结果的影响并选用最高可模拟次数对量子芯片和模拟器的运算结果进行比对。设计并运行5 bit量子傅里叶变换算法和3 bit Grover搜索算法,分别采用IBM Q模拟器进行最高次数的模拟。实验结果表明,量子芯片测试结果并没有随测量次数的增加而优化,模拟器计算结果的准确度明显优于量子芯片。
基金Supported by the National High Technology Research and Development Program(No.2011AA010803)the National Natural Science Foundation of China(No.U1204602)
文摘In order to improve the attack efficiency of the New FORK-256 function, an algorithm based on Grover's quantum search algorithm and birthday attack is proposed. In this algorithm, finding a collision for arbitrary hash function only needs O(2m/3) expected evaluations, where m is the size of hash space value. It is proved that the algorithm can obviously improve the attack efficiency for only needing O(2 74.7) expected evaluations, and this is more efficient than any known classical algorithm, and the consumed space of the algorithm equals the evaluation.
基金Project supported partially by the National Natural Science Foundation of China (Grant No 60678022), the Doctoral Fund of Ministry of Education of China (Grant No 20060357008). Anhui Provincial Natural Science Foundation (Grant No 070412060), the Key Program of the Education, Department of Anhui Province (Grant No 2006KJ070A), the Program of the Education, Department of Anhui Province (Grant No 2006KJ057B) and the Talent Foundation of Anhui University, Anhui Key Laboratory of Information Materials and Devices (Anhui University).
文摘We propose a scheme for implementing the Grover search algorithm with two superconducting quantum interference devices (SQUIDs) in a cavity. Our scheme only requires single resonant interaction of the SQUID-cavity system and the required interaction time is very short. The simplicity of the process and the reduction of the interaction time are important for restraining decoherence.
基金Project supported by Fok Ying Tung Education Foundation (Grant No 81008), the National Natural Science Foundation of China (Grant Nos 60008003 and 10225421), and Funds from Fuzhou University, China.
文摘Two schemes for the implementation of the two-qubit Grover search algorithm in the ion trap system are proposed. These schemes might be experimentally realizable with presently available techniques. The experimental implementation of the schemes would be an important step toward more complex quantum computation in the ion trap system.