Numerical groundwater modeling is an effective tool to guide water resources management and explore complex groundwater-dependent ecosystems in arid regions.In the Heihe River Basin(HRB),China’s second largest inland...Numerical groundwater modeling is an effective tool to guide water resources management and explore complex groundwater-dependent ecosystems in arid regions.In the Heihe River Basin(HRB),China’s second largest inland river basin located in arid northwest China,a series of groundwater flow models have been developed for those purposes over the past 20 years.These models have elucidated the characteristics of groundwater flow systems and provided the scientific basis for a more sustainable management of groundwater resources and ecosystem services.The first part of this paper presents an overview of previous groundwater modeling studies and key lessons learned based on seven different groundwater models in the middle and lower HRB at sub-basin scales.The second part reviews the rationale for development of a regional basin-scale groundwater flow model that unifies previous sub-basin models.In addition,this paper discusses the opportunities and challenges in developing a regional groundwater flow model in an arid river basin such as the HRB.展开更多
Due to severe water scarcity, water resources used in agricultural sector have been reduced markedly in Hetao irrigation district. Application of water-saving practices (WSPs) is required for the sustainable agricultu...Due to severe water scarcity, water resources used in agricultural sector have been reduced markedly in Hetao irrigation district. Application of water-saving practices (WSPs) is required for the sustainable agricultural development. The human activities including WSPs and increase of groundwater abstraction can lower down the groundwater table, which is helpful to the salinity control. Meanwhile, an excessively large groundwater table depth may result in negative impact on crop growth and fragile ecological environment. In this paper, the Jiefangzha irrigation system in Hetao irrigation district was selected as a typical area, a groundwater flow model based on ArcInfo Geographic Information System (GIS) was developed and implemented to quantify the effect of human activities on the groundwater system in this area. The preand post-processing of model data was performed efficiently by using the available GIS tools. The time-variant data in boundary conditions was further edited in Microsoft Excel with programs of Visual Basic for Application (VBA). The model was calibrated and validated with independent data sets. Application of the model indicated that it can well describe the effect of human activities on groundwater dynamics in Jiefangzha irrigation system.展开更多
Groundwater flow through fractured rocks has been recognized as an important issue in many geotechnical engineering practices.Several key aspects of fundamental mechanisms,numerical modeling and engineering applicatio...Groundwater flow through fractured rocks has been recognized as an important issue in many geotechnical engineering practices.Several key aspects of fundamental mechanisms,numerical modeling and engineering applications of flow in fractured rocks are discussed.First,the microscopic mechanisms of fluid flow in fractured rocks,especially under the complex conditions of non-Darcian flow,multiphase flow,rock dissolution,and particle transport,have been revealed through a com-bined effort of visualized experiments and theoretical analysis.Then,laboratory and field methods of characterizing hydraulic properties(e.g.intrinsic permeability,inertial permeability,and unsaturated flow parameters)of fractured rocks in different flow regimes have been proposed.Subsequently,high-performance numerical simulation approaches for large-scale modeling of groundwater flow in frac-tured rocks and aquifers have been developed.Numerical procedures for optimization design of seepage control systems in various settings have also been proposed.Mechanisms of coupled hydro-mechanical processes and control of flow-induced deformation have been discussed.Finally,three case studies are presented to illustrate the applications of the improved theoretical understanding,characterization methods,modeling approaches,and seepage and deformation control strategies to geotechnical engi-neering projects.展开更多
Water resources, as the primary limiting factor, constrain the economic and social development in arid inland areas. The Zhangye Basin is a representative area of inland river basins, which is located in the middle pa...Water resources, as the primary limiting factor, constrain the economic and social development in arid inland areas. The Zhangye Basin is a representative area of inland river basins, which is located in the middle parts of the Heihe River watershed, northwestern China. Facing with the huge water shortage, people exploited ground- water at a large scale in recent years. The reducing recharge from surface water and over-exploitation of ground- water led to the decline of groundwater levels and threatened the sustainability of water resources. This study con- structed a conceptual and numerical groundwater flow model and calibrated the model based on the observed wells A solute transport model was built using MT3DMS to calculate the groundwater age distribution in the Zhangye Basin. The simulated result shows that the youngest groundwater is distributed near the most upstream areas in the model domain, which is less than 1,000 a, older groundwater is distributed in deeper parts of the aquifer and near the discharge outlets, ranging from 6,000 a to over 20,000 a. Spatial variation of groundwater ages in the middle area indicates the recharge diversity between unconfined and confined aquifer. Groundwater age can serve as an indicator to evaluate groundwater's renewal capacity and sustainability. The formation of groundwater resources in the lower stream area would spend 10,000 a or even more than 20,000 a, so exploitation of groundwater in these areas should be restrained.展开更多
Numerical modeling is of crucial importance in understanding the behavior of regional groundwater system. However, the demand on modeling capability is intensive when performing high-resolution simulation over long ti...Numerical modeling is of crucial importance in understanding the behavior of regional groundwater system. However, the demand on modeling capability is intensive when performing high-resolution simulation over long time span. This paper presents the application of a parallel program to speed up the detailed modeling of the groundwater flow system in the North China Plain. The parallel program is implemented by rebuilding the well-known MODFLOW program on our parallelcomputing framework, which is achieved by designing patch-based parallel data structures and algorithms but maintaining the compute flow and functionalities of MODFLOW. The detailed model with more than one million grids and a decade of time has been solved. The parallel simulation results were examined against the field observed data and these two data are generally in good agreement. For the comparison on solution time, the parallel program running on 32 cores is 6 times faster than the fastest MICCG-based MODFLOW program and 11 times faster than the GMG-based MODFLOW program. Therefore, remarkable computational time can be saved when using the parallel program, which facilitates the rapid modeling and prediction of the groundwater flow system in the North China Plain.展开更多
The present work provides hydrochemical and stable isotope data and their interpretations for 54 springs and 20 wells, monitored from 2002 to 2006, in the Southern Latium region of Central Italy to identify flow paths...The present work provides hydrochemical and stable isotope data and their interpretations for 54 springs and 20 wells, monitored from 2002 to 2006, in the Southern Latium region of Central Italy to identify flow paths, recharge areas and hydrochemical processes governing the evolution of groundwater in this region. The hydrogeological conceptual model of the carbonate aquifers of southern Latium was based on environmental isotopic and hydrochemical investigation techniques to characterize and model these aquifer systems with the aim of achieving proper management and protection of these important resources. Most of the spring samples, issuing from Lepini, Ausoni and Aurunci Mts., are characterized as Ca-Mg-HCO3 water type, however, some samples show a composition of Na-Cl and mixed Ca-Na-HCO3-Cl waters. Groundwater samples from Pontina Plain are mostly characterized by Na-Cl and Ca-Cl type waters. Geochemical modeling and saturation index computation of the Lepini, Ausoni Aurunci springs and Pontina Plain wells shows an interaction with carbonate rocks. Most of the spring and well water samples were saturated with respect to calcite and dolomite, however all sampled waters were undersaturated with respect to gypsum and halite. The relationship between δ18O and δ2H, for spring and well water samples, shows shifts of both the slope and the deuterium excess when compared to the world meteoric (WMWL) and central Italy meteoric (CIMWL) water lines. The deviation of data points from the meteoric lines can be attributed to evaporation both during the falling of the rain and by run-off on the ground surface before infiltration. Most springs and wells have a deuterium excess above 10 ‰ suggesting the precipitation in the groundwater comes from the Mediterranean sector. On the basis of local isotopic gradients, in combination with topographic and geologic criteria, four recharge areas were identified in the Aurunci Mountains. In Pontina Plain, the elevations of the recharging areas suggest that the Lepini carbonate aqu展开更多
How to identify the nested structure of a three-dimensional(3D)hierarchical groundwater flow system is always a difficult problem puzzling hydrogeologists due to the multiple scales and complexity of the 3D flow field...How to identify the nested structure of a three-dimensional(3D)hierarchical groundwater flow system is always a difficult problem puzzling hydrogeologists due to the multiple scales and complexity of the 3D flow field.The main objective of this study was to develop a quantitative method to partition the nested groundwater flow system into different hierarchies in three dimensions.A 3D numerical model with topography derived from the real geomatic data in Jinan,China was implemented to simulate groundwater flow and residence time at the regional scale while the recharge rate,anisotropic permeability and hydrothermal effect being set as climatic and hydrogeological variables in the simulations.The simulated groundwater residence time distribution showed a favorable consistency with the spatial distribution of flow fields.The probability density function of residence time with discontinuous segments indicated the discrete nature of time domain between different flow hierarchies,and it was used to partition the hierarchical flow system into shallow/intermediate/deep flow compartments.The changes in the groundwater flow system can be quantitatively depicted by the climatic and hydrogeological variables.This study provides new insights and an efficient way to analyze groundwater circulation and evolution in three dimensions from the perspective of time domain.展开更多
Simulation of flow in fractured aquifers is a complex issue. The problem of mathematical modeling of highly heterogeneous porous media, typical of natural systems, couples with the needs making proper simplifying assu...Simulation of flow in fractured aquifers is a complex issue. The problem of mathematical modeling of highly heterogeneous porous media, typical of natural systems, couples with the needs making proper simplifying assumptions and approximations. In this kind of groundwater systems, studying contamination spreading and analyzing risk are challenging tasks. The main difficulty stems from determining both the travel times and the maximum distances covered by pollutants. In this context, the risk of contamination in the deep carbonate aquifer of the Augusta coastal area is presented. We used a geostatistical approach and numerical codes (MODFLOW-2000, MT3DMS) to reconstruct the complex geological framework of the study area where several contamination scenarios of hypothetical point source in a risk assessment framework were simulated. Results on the contaminant spreading are discussed and the effect of the geological structures characterizing the zone under study, namely horst and graben, are described.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.91225301,91025019 and 41271032)
文摘Numerical groundwater modeling is an effective tool to guide water resources management and explore complex groundwater-dependent ecosystems in arid regions.In the Heihe River Basin(HRB),China’s second largest inland river basin located in arid northwest China,a series of groundwater flow models have been developed for those purposes over the past 20 years.These models have elucidated the characteristics of groundwater flow systems and provided the scientific basis for a more sustainable management of groundwater resources and ecosystem services.The first part of this paper presents an overview of previous groundwater modeling studies and key lessons learned based on seven different groundwater models in the middle and lower HRB at sub-basin scales.The second part reviews the rationale for development of a regional basin-scale groundwater flow model that unifies previous sub-basin models.In addition,this paper discusses the opportunities and challenges in developing a regional groundwater flow model in an arid river basin such as the HRB.
基金Supported by the Chinese 11th Five Years’ Research Programs (Grant Nos. 2006- BAD11B06, 2007BAC08B02)the National High-Tech Research and Develop-ment Program of China ("863" Project) (Grant No. 2006AA100207)
文摘Due to severe water scarcity, water resources used in agricultural sector have been reduced markedly in Hetao irrigation district. Application of water-saving practices (WSPs) is required for the sustainable agricultural development. The human activities including WSPs and increase of groundwater abstraction can lower down the groundwater table, which is helpful to the salinity control. Meanwhile, an excessively large groundwater table depth may result in negative impact on crop growth and fragile ecological environment. In this paper, the Jiefangzha irrigation system in Hetao irrigation district was selected as a typical area, a groundwater flow model based on ArcInfo Geographic Information System (GIS) was developed and implemented to quantify the effect of human activities on the groundwater system in this area. The preand post-processing of model data was performed efficiently by using the available GIS tools. The time-variant data in boundary conditions was further edited in Microsoft Excel with programs of Visual Basic for Application (VBA). The model was calibrated and validated with independent data sets. Application of the model indicated that it can well describe the effect of human activities on groundwater dynamics in Jiefangzha irrigation system.
基金The financial supports from the National Natural Science Foundation of China(Grant Nos.51988101,51925906 and 52122905)are gratefully acknowledged.
文摘Groundwater flow through fractured rocks has been recognized as an important issue in many geotechnical engineering practices.Several key aspects of fundamental mechanisms,numerical modeling and engineering applications of flow in fractured rocks are discussed.First,the microscopic mechanisms of fluid flow in fractured rocks,especially under the complex conditions of non-Darcian flow,multiphase flow,rock dissolution,and particle transport,have been revealed through a com-bined effort of visualized experiments and theoretical analysis.Then,laboratory and field methods of characterizing hydraulic properties(e.g.intrinsic permeability,inertial permeability,and unsaturated flow parameters)of fractured rocks in different flow regimes have been proposed.Subsequently,high-performance numerical simulation approaches for large-scale modeling of groundwater flow in frac-tured rocks and aquifers have been developed.Numerical procedures for optimization design of seepage control systems in various settings have also been proposed.Mechanisms of coupled hydro-mechanical processes and control of flow-induced deformation have been discussed.Finally,three case studies are presented to illustrate the applications of the improved theoretical understanding,characterization methods,modeling approaches,and seepage and deformation control strategies to geotechnical engi-neering projects.
基金financially supported by the National Natural Science Foundation of China (91225301)
文摘Water resources, as the primary limiting factor, constrain the economic and social development in arid inland areas. The Zhangye Basin is a representative area of inland river basins, which is located in the middle parts of the Heihe River watershed, northwestern China. Facing with the huge water shortage, people exploited ground- water at a large scale in recent years. The reducing recharge from surface water and over-exploitation of ground- water led to the decline of groundwater levels and threatened the sustainability of water resources. This study con- structed a conceptual and numerical groundwater flow model and calibrated the model based on the observed wells A solute transport model was built using MT3DMS to calculate the groundwater age distribution in the Zhangye Basin. The simulated result shows that the youngest groundwater is distributed near the most upstream areas in the model domain, which is less than 1,000 a, older groundwater is distributed in deeper parts of the aquifer and near the discharge outlets, ranging from 6,000 a to over 20,000 a. Spatial variation of groundwater ages in the middle area indicates the recharge diversity between unconfined and confined aquifer. Groundwater age can serve as an indicator to evaluate groundwater's renewal capacity and sustainability. The formation of groundwater resources in the lower stream area would spend 10,000 a or even more than 20,000 a, so exploitation of groundwater in these areas should be restrained.
基金supported by the National Basic Research Program (973 Program) of China (Nos. 2010CB428804 and 2011CB309702)the Key Projects of National Natural Science Foundation of China (No. 61033009)
文摘Numerical modeling is of crucial importance in understanding the behavior of regional groundwater system. However, the demand on modeling capability is intensive when performing high-resolution simulation over long time span. This paper presents the application of a parallel program to speed up the detailed modeling of the groundwater flow system in the North China Plain. The parallel program is implemented by rebuilding the well-known MODFLOW program on our parallelcomputing framework, which is achieved by designing patch-based parallel data structures and algorithms but maintaining the compute flow and functionalities of MODFLOW. The detailed model with more than one million grids and a decade of time has been solved. The parallel simulation results were examined against the field observed data and these two data are generally in good agreement. For the comparison on solution time, the parallel program running on 32 cores is 6 times faster than the fastest MICCG-based MODFLOW program and 11 times faster than the GMG-based MODFLOW program. Therefore, remarkable computational time can be saved when using the parallel program, which facilitates the rapid modeling and prediction of the groundwater flow system in the North China Plain.
文摘The present work provides hydrochemical and stable isotope data and their interpretations for 54 springs and 20 wells, monitored from 2002 to 2006, in the Southern Latium region of Central Italy to identify flow paths, recharge areas and hydrochemical processes governing the evolution of groundwater in this region. The hydrogeological conceptual model of the carbonate aquifers of southern Latium was based on environmental isotopic and hydrochemical investigation techniques to characterize and model these aquifer systems with the aim of achieving proper management and protection of these important resources. Most of the spring samples, issuing from Lepini, Ausoni and Aurunci Mts., are characterized as Ca-Mg-HCO3 water type, however, some samples show a composition of Na-Cl and mixed Ca-Na-HCO3-Cl waters. Groundwater samples from Pontina Plain are mostly characterized by Na-Cl and Ca-Cl type waters. Geochemical modeling and saturation index computation of the Lepini, Ausoni Aurunci springs and Pontina Plain wells shows an interaction with carbonate rocks. Most of the spring and well water samples were saturated with respect to calcite and dolomite, however all sampled waters were undersaturated with respect to gypsum and halite. The relationship between δ18O and δ2H, for spring and well water samples, shows shifts of both the slope and the deuterium excess when compared to the world meteoric (WMWL) and central Italy meteoric (CIMWL) water lines. The deviation of data points from the meteoric lines can be attributed to evaporation both during the falling of the rain and by run-off on the ground surface before infiltration. Most springs and wells have a deuterium excess above 10 ‰ suggesting the precipitation in the groundwater comes from the Mediterranean sector. On the basis of local isotopic gradients, in combination with topographic and geologic criteria, four recharge areas were identified in the Aurunci Mountains. In Pontina Plain, the elevations of the recharging areas suggest that the Lepini carbonate aqu
基金supported by the National Natural Science Foundation of China(Nos.41807219,41877192,U1906209,42072331)the National Key R&D Program of China(No.2017YFC0505304)the Fundamental Research Funds for Central Public Welfare Research Institutes(Nos.CKSF 2019170/TB,CKSF 2016029/TB)。
文摘How to identify the nested structure of a three-dimensional(3D)hierarchical groundwater flow system is always a difficult problem puzzling hydrogeologists due to the multiple scales and complexity of the 3D flow field.The main objective of this study was to develop a quantitative method to partition the nested groundwater flow system into different hierarchies in three dimensions.A 3D numerical model with topography derived from the real geomatic data in Jinan,China was implemented to simulate groundwater flow and residence time at the regional scale while the recharge rate,anisotropic permeability and hydrothermal effect being set as climatic and hydrogeological variables in the simulations.The simulated groundwater residence time distribution showed a favorable consistency with the spatial distribution of flow fields.The probability density function of residence time with discontinuous segments indicated the discrete nature of time domain between different flow hierarchies,and it was used to partition the hierarchical flow system into shallow/intermediate/deep flow compartments.The changes in the groundwater flow system can be quantitatively depicted by the climatic and hydrogeological variables.This study provides new insights and an efficient way to analyze groundwater circulation and evolution in three dimensions from the perspective of time domain.
文摘Simulation of flow in fractured aquifers is a complex issue. The problem of mathematical modeling of highly heterogeneous porous media, typical of natural systems, couples with the needs making proper simplifying assumptions and approximations. In this kind of groundwater systems, studying contamination spreading and analyzing risk are challenging tasks. The main difficulty stems from determining both the travel times and the maximum distances covered by pollutants. In this context, the risk of contamination in the deep carbonate aquifer of the Augusta coastal area is presented. We used a geostatistical approach and numerical codes (MODFLOW-2000, MT3DMS) to reconstruct the complex geological framework of the study area where several contamination scenarios of hypothetical point source in a risk assessment framework were simulated. Results on the contaminant spreading are discussed and the effect of the geological structures characterizing the zone under study, namely horst and graben, are described.