以静止无功发生器(static var generator,SVG)为例,针对构网型逆变器和SVG并联系统的电压稳定性问题,提出构网型逆变器与SVG并联系统无功功率协调控制策略。将并联系统的运行状态总结为四种工况,通过工况识别、无功补偿量计算、无功功...以静止无功发生器(static var generator,SVG)为例,针对构网型逆变器和SVG并联系统的电压稳定性问题,提出构网型逆变器与SVG并联系统无功功率协调控制策略。将并联系统的运行状态总结为四种工况,通过工况识别、无功补偿量计算、无功功率分配策略、工况切换,来协调不同工况下构网型逆变器与SVG注入公共耦合点的无功功率,使并联系统在各种情况下均可稳定可靠工作。在MATLAB中搭建模型并进行仿真,结果表明所提控制策略可以实现工况的快速识别与切换、无功补偿量的计算、无功功率的分配,以及对公共耦合点电压的快速支撑。展开更多
Low voltage three-phase four-wire AC distribution grids may experience high neutral current,mainly caused by asymmetrical distribution of single-phase loads in three phases.High neutral current will not only increase ...Low voltage three-phase four-wire AC distribution grids may experience high neutral current,mainly caused by asymmetrical distribution of single-phase loads in three phases.High neutral current will not only increase line losses but also result in neutral potential variations.For the LV AC distribution grid established by a grid-forming inverter(e.g.,uninterruptible power supply and solid-state-transformer),it also suffers from the same neutral current issues.Therefore,this paper comparatively studies several neutral current control approaches and their impacts on grid voltage balance,which is required by grid code.Then,this paper proposes an optimal neutral current control approach,which can obtain maximum neutral current suppression with less impact on grid voltage balance.The correctness of the theoretical analysis is validated through both simulation and experimental results.展开更多
文摘以静止无功发生器(static var generator,SVG)为例,针对构网型逆变器和SVG并联系统的电压稳定性问题,提出构网型逆变器与SVG并联系统无功功率协调控制策略。将并联系统的运行状态总结为四种工况,通过工况识别、无功补偿量计算、无功功率分配策略、工况切换,来协调不同工况下构网型逆变器与SVG注入公共耦合点的无功功率,使并联系统在各种情况下均可稳定可靠工作。在MATLAB中搭建模型并进行仿真,结果表明所提控制策略可以实现工况的快速识别与切换、无功补偿量的计算、无功功率的分配,以及对公共耦合点电压的快速支撑。
基金the National Natural Science Foundation of China(NSFC)under Grant 51767017National Science and Technology Major Project of Gansu Province under Grant 19ZD2GA003.
文摘Low voltage three-phase four-wire AC distribution grids may experience high neutral current,mainly caused by asymmetrical distribution of single-phase loads in three phases.High neutral current will not only increase line losses but also result in neutral potential variations.For the LV AC distribution grid established by a grid-forming inverter(e.g.,uninterruptible power supply and solid-state-transformer),it also suffers from the same neutral current issues.Therefore,this paper comparatively studies several neutral current control approaches and their impacts on grid voltage balance,which is required by grid code.Then,this paper proposes an optimal neutral current control approach,which can obtain maximum neutral current suppression with less impact on grid voltage balance.The correctness of the theoretical analysis is validated through both simulation and experimental results.