Compared with traditional real-time forecasting,this paper proposes a Grey Markov Model(GMM) to forecast the maximum water levels at hydrological stations in the estuary area.The GMM combines the Grey System and Marko...Compared with traditional real-time forecasting,this paper proposes a Grey Markov Model(GMM) to forecast the maximum water levels at hydrological stations in the estuary area.The GMM combines the Grey System and Markov theory into a higher precision model.The GMM takes advantage of the Grey System to predict the trend values and uses the Markov theory to forecast fluctuation values,and thus gives forecast results involving two aspects of information.The procedure for forecasting annul maximum water levels with the GMM contains five main steps:1) establish the GM(1,1) model based on the data series;2) estimate the trend values;3) establish a Markov Model based on relative error series;4) modify the relative errors caused in step 2,and then obtain the relative errors of the second order estimation;5) compare the results with measured data and estimate the accuracy.The historical water level records(from 1960 to 1992) at Yuqiao Hydrological Station in the estuary area of the Haihe River near Tianjin,China are utilized to calibrate and verify the proposed model according to the above steps.Every 25 years' data are regarded as a hydro-sequence.Eight groups of simulated results show reasonable agreement between the predicted values and the measured data.The GMM is also applied to the 10 other hydrological stations in the same estuary.The forecast results for all of the hydrological stations are good or acceptable.The feasibility and effectiveness of this new forecasting model have been proved in this paper.展开更多
According to the pulverized coal combustion flame image texture features of the rotary-kiln oxide pellets sintering process,a combustion working condition recognition method based on the generalized learning vector(GL...According to the pulverized coal combustion flame image texture features of the rotary-kiln oxide pellets sintering process,a combustion working condition recognition method based on the generalized learning vector(GLVQ) neural network is proposed.Firstly,the numerical flame image is analyzed to extract texture features,such as energy,entropy and inertia,based on grey-level co-occurrence matrix(GLCM) to provide qualitative information on the changes in the visual appearance of the flame.Then the kernel principal component analysis(KPCA) method is adopted to deduct the input vector with high dimensionality so as to reduce the GLVQ target dimension and network scale greatly.Finally,the GLVQ neural network is trained by using the normalized texture feature data.The test results show that the proposed KPCA-GLVQ classifer has an excellent performance on training speed and correct recognition rate,and it meets the requirement for real-time combustion working condition recognition for the rotary kiln process.展开更多
基金supported by the National Natural Science Foundation of China (50879085)the Program for New Century Excellent Talents in University(NCET-07-0778)the Key Technology Research Project of Dynamic Environmental Flume for Ocean Monitoring Facilities (201005027-4)
文摘Compared with traditional real-time forecasting,this paper proposes a Grey Markov Model(GMM) to forecast the maximum water levels at hydrological stations in the estuary area.The GMM combines the Grey System and Markov theory into a higher precision model.The GMM takes advantage of the Grey System to predict the trend values and uses the Markov theory to forecast fluctuation values,and thus gives forecast results involving two aspects of information.The procedure for forecasting annul maximum water levels with the GMM contains five main steps:1) establish the GM(1,1) model based on the data series;2) estimate the trend values;3) establish a Markov Model based on relative error series;4) modify the relative errors caused in step 2,and then obtain the relative errors of the second order estimation;5) compare the results with measured data and estimate the accuracy.The historical water level records(from 1960 to 1992) at Yuqiao Hydrological Station in the estuary area of the Haihe River near Tianjin,China are utilized to calibrate and verify the proposed model according to the above steps.Every 25 years' data are regarded as a hydro-sequence.Eight groups of simulated results show reasonable agreement between the predicted values and the measured data.The GMM is also applied to the 10 other hydrological stations in the same estuary.The forecast results for all of the hydrological stations are good or acceptable.The feasibility and effectiveness of this new forecasting model have been proved in this paper.
基金supported by China Postdoctoral Science Foundation(No.20110491510)Program for Liaoning Excellent Talents in University(No.LJQ2011027)+1 种基金Anshan Science and Technology Project(No.2011MS11)Special Research Foundation of University of Science and Technology of Liaoning(No.2011zx10)
文摘According to the pulverized coal combustion flame image texture features of the rotary-kiln oxide pellets sintering process,a combustion working condition recognition method based on the generalized learning vector(GLVQ) neural network is proposed.Firstly,the numerical flame image is analyzed to extract texture features,such as energy,entropy and inertia,based on grey-level co-occurrence matrix(GLCM) to provide qualitative information on the changes in the visual appearance of the flame.Then the kernel principal component analysis(KPCA) method is adopted to deduct the input vector with high dimensionality so as to reduce the GLVQ target dimension and network scale greatly.Finally,the GLVQ neural network is trained by using the normalized texture feature data.The test results show that the proposed KPCA-GLVQ classifer has an excellent performance on training speed and correct recognition rate,and it meets the requirement for real-time combustion working condition recognition for the rotary kiln process.