We analyzed the seismic waveforms from the December 26, 2004 Sumatra-Andaman earthquake recorded at broadband seismic stations in western Europe. Previous studies involving of the beam-forming technique and high frequ...We analyzed the seismic waveforms from the December 26, 2004 Sumatra-Andaman earthquake recorded at broadband seismic stations in western Europe. Previous studies involving of the beam-forming technique and high frequency analysis suggest that the earthquake ruptured with a duration of around 500 s. This very long duration makes P wave overlap with later arrivals such as PP wave, which follows P in about 200 s. Since P waves are crucial for modeling earthquake processes, we propose an iterative method to separate P and PP waveforms. The separated P waveform confirms a second large energy release around 300 s after the initial rupture. The iterative signal separation technique is particularly useful for mixed signals that are not independent and the number of recording stations far exceeds number of mixed signal sources.展开更多
基金supported by CAS fund(KZCX2-YW-116-1)National Natural Science Foundation of China(40821160549 and 41074032)China Earthquake Administration fund(200808078)
文摘We analyzed the seismic waveforms from the December 26, 2004 Sumatra-Andaman earthquake recorded at broadband seismic stations in western Europe. Previous studies involving of the beam-forming technique and high frequency analysis suggest that the earthquake ruptured with a duration of around 500 s. This very long duration makes P wave overlap with later arrivals such as PP wave, which follows P in about 200 s. Since P waves are crucial for modeling earthquake processes, we propose an iterative method to separate P and PP waveforms. The separated P waveform confirms a second large energy release around 300 s after the initial rupture. The iterative signal separation technique is particularly useful for mixed signals that are not independent and the number of recording stations far exceeds number of mixed signal sources.