We use the work of de Vega, Sanchez, and Comes (1997), to approximate the “particle density” of a “graviton gas”. This “particle density” derivation is compared with Dolgov’s (1997) expression of the Vacuum ene...We use the work of de Vega, Sanchez, and Comes (1997), to approximate the “particle density” of a “graviton gas”. This “particle density” derivation is compared with Dolgov’s (1997) expression of the Vacuum energy in terms of a phase transition. The idea is to have a quartic potential, and then to utilize the Bogomol’nyi inequality to refine what the phase transition states. We utilize Ng, Infinite quantum information procedures to link our work with initial entropy and other issues and close with a variation in the HUP: at the start of the expansion of the universe.展开更多
Using particle density of a “graviton gas” as a spinoff of the Gross-Pitaevskii Poisson system of self-gravitating Bose Einstein condensates, this suggests quantum pressure. We use the quantum pressure suggestion li...Using particle density of a “graviton gas” as a spinoff of the Gross-Pitaevskii Poisson system of self-gravitating Bose Einstein condensates, this suggests quantum pressure. We use the quantum pressure suggestion linked to entropy and go to a matter of what energy levels may be suggested.展开更多
If a non-zero graviton mass exists, the question arises if a release of gravitons, possibly as a “Graviton gas” at the onset of inflation could be an initial vacuum state. Pros and cons to this idea are raised, in p...If a non-zero graviton mass exists, the question arises if a release of gravitons, possibly as a “Graviton gas” at the onset of inflation could be an initial vacuum state. Pros and cons to this idea are raised, in part based upon Bose gases. The analysis starts with Volovik’s condensed matter treatment of GR, and ends with consequences, which the author sees, if the supposition is true.展开更多
文摘We use the work of de Vega, Sanchez, and Comes (1997), to approximate the “particle density” of a “graviton gas”. This “particle density” derivation is compared with Dolgov’s (1997) expression of the Vacuum energy in terms of a phase transition. The idea is to have a quartic potential, and then to utilize the Bogomol’nyi inequality to refine what the phase transition states. We utilize Ng, Infinite quantum information procedures to link our work with initial entropy and other issues and close with a variation in the HUP: at the start of the expansion of the universe.
文摘Using particle density of a “graviton gas” as a spinoff of the Gross-Pitaevskii Poisson system of self-gravitating Bose Einstein condensates, this suggests quantum pressure. We use the quantum pressure suggestion linked to entropy and go to a matter of what energy levels may be suggested.
文摘If a non-zero graviton mass exists, the question arises if a release of gravitons, possibly as a “Graviton gas” at the onset of inflation could be an initial vacuum state. Pros and cons to this idea are raised, in part based upon Bose gases. The analysis starts with Volovik’s condensed matter treatment of GR, and ends with consequences, which the author sees, if the supposition is true.