期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于两种子结构感知的社交网络Graphlets采样估计算法
1
作者
赵倩倩
吕敏
许胤龙
《计算机科学》
CSCD
北大核心
2019年第3期314-320,共7页
graphlets是指大规模网络中节点数目较少的连通诱导子图,在社交网络和生物信息学领域有着广泛的应用。由于精确计数的计算成本较高,目前大多采用随机游走采样算法来近似估计graphlets的频率。随着节点数目的增多,graphlets的种类数增长...
graphlets是指大规模网络中节点数目较少的连通诱导子图,在社交网络和生物信息学领域有着广泛的应用。由于精确计数的计算成本较高,目前大多采用随机游走采样算法来近似估计graphlets的频率。随着节点数目的增多,graphlets的种类数增长迅速且结构变化复杂,快速估计大规模网络中所有种类的graphlets的频率是一项挑战。文中提出了基于两种子结构的随机游走采样算法CSRW2来估计graphlets频率,即给定graphlets节点数k(k=4,5),通过采样k-graphlets的子结构(k-1)-path和3-star得到两种样本,之后用比例放大法综合,以高效估计graphlets并适应graphlets结构的复杂变化。实验结果表明,CSRW2能以统一的框架估计所有k-graphlets类型的频率,其估计精度优于现有代表性算法,更适用于频率较低且结构较稠密的graphlets。例如,用CSRW2估计真实网络sofb-Penn94中的5-graphlets,当样本数为2万时,标准均方根误差的平均值由WRW算法的0.8降低至CSRW2算法的0.22左右。
展开更多
关键词
社交网络
graphlet
graphlet
频率
随机游走
采样算法
无偏估计
下载PDF
职称材料
题名
基于两种子结构感知的社交网络Graphlets采样估计算法
1
作者
赵倩倩
吕敏
许胤龙
机构
中国科学技术大学计算机科学与技术学院高性能计算安徽省重点实验室
出处
《计算机科学》
CSCD
北大核心
2019年第3期314-320,共7页
基金
国家自然科学基金面上项目(61672486)资助
文摘
graphlets是指大规模网络中节点数目较少的连通诱导子图,在社交网络和生物信息学领域有着广泛的应用。由于精确计数的计算成本较高,目前大多采用随机游走采样算法来近似估计graphlets的频率。随着节点数目的增多,graphlets的种类数增长迅速且结构变化复杂,快速估计大规模网络中所有种类的graphlets的频率是一项挑战。文中提出了基于两种子结构的随机游走采样算法CSRW2来估计graphlets频率,即给定graphlets节点数k(k=4,5),通过采样k-graphlets的子结构(k-1)-path和3-star得到两种样本,之后用比例放大法综合,以高效估计graphlets并适应graphlets结构的复杂变化。实验结果表明,CSRW2能以统一的框架估计所有k-graphlets类型的频率,其估计精度优于现有代表性算法,更适用于频率较低且结构较稠密的graphlets。例如,用CSRW2估计真实网络sofb-Penn94中的5-graphlets,当样本数为2万时,标准均方根误差的平均值由WRW算法的0.8降低至CSRW2算法的0.22左右。
关键词
社交网络
graphlet
graphlet
频率
随机游走
采样算法
无偏估计
Keywords
Social network
graphlet
graphlet
concentration
Random walk
Sampling algorithm
Unbiased estimation
分类号
TP393 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于两种子结构感知的社交网络Graphlets采样估计算法
赵倩倩
吕敏
许胤龙
《计算机科学》
CSCD
北大核心
2019
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部