对化学镀Ni—P— (CF) n 复合镀层工艺进行了较全面的研究 ,详细测定和评述了氟化石墨浓度与镀层中(CF) n 粒子含量及镀速的关系 ,以及基础镀液性质和操作条件 (如温度、pH值、搅拌方式等 )对复合镀的影响。提出了一种具有实用价值的化...对化学镀Ni—P— (CF) n 复合镀层工艺进行了较全面的研究 ,详细测定和评述了氟化石墨浓度与镀层中(CF) n 粒子含量及镀速的关系 ,以及基础镀液性质和操作条件 (如温度、pH值、搅拌方式等 )对复合镀的影响。提出了一种具有实用价值的化学镀Ni—P— (CF) n 复合镀层工艺技术。与电镀相比 ,该复合镀层无应力、难以从机体上剥离、硬度高、无磁性、耐热性好。展开更多
Electric double layer(EDL)is a critical topic in electrochemistry and largely determines the working performance of lithium batteries.However,atomic insights into the EDL structures on heteroatom-modified graphite ano...Electric double layer(EDL)is a critical topic in electrochemistry and largely determines the working performance of lithium batteries.However,atomic insights into the EDL structures on heteroatom-modified graphite anodes and EDL evolution with electrode potential are very lacking.Herein,a constant-potential molecular dynamics(CPMD)method is proposed to probe the EDL structure under working conditions,taking N-doped graphite electrodes and carbonate electrolytes as an example.An interface model was developed,incorporating the electrode potential and atom electronegativities.As a result,an insightful atomic scenario for the EDL structure under varied electrode potentials has been established,which unveils the important role of doping sites in regulating both the EDL structures and the following electrochemical reactions at the atomic level.Specifically,the negatively charged N atoms repel the anions and adsorb Li~+at high and low potentials,respectively.Such preferential adsorption suggests that Ndoped graphite can promote Li~+desolvation and regulate the location of Li~+deposition.This CPMD method not only unveils the mysterious function of N-doping from the viewpoint of EDL at the atomic level but also applies to probe the interfacial structure on other complicated electrodes.展开更多
Incorporation of higher content Si anode material beyond 5 wt% to Li-ion batteries(LIBs)is challenging,owing to large volume change,swelling,and solid electrolyte interphase(SEI)instability issues.Herein,a strategy of...Incorporation of higher content Si anode material beyond 5 wt% to Li-ion batteries(LIBs)is challenging,owing to large volume change,swelling,and solid electrolyte interphase(SEI)instability issues.Herein,a strategy of diacetoxydimethylsilane(DAMS)additive-directed SEI stabilization is proposed for a stable operation of Si-0.33FeSi_(2)(named as Si-Fe)anode without graphite,which provides siloxane inorganics and organics enrichment that compensate insufficient passivation of fluoroethylene carbonate(FEC)additive and reduce a dependence on FEC.Unprecedented stable cycling performance of highly loaded(3.5 mA h cm^(-2))pure Si-Fe anode is achieved with 2 wt%DAMS combined with 9 wt%FEC additives under ambient pressure,yielding high capacity 1270 mA h g^(-1)at 0.5 C and significantly improved capacity retention of 81% after 100 cycles,whereas short circuit and rapid capacity fade occur with FEC only additive.DAMS-directed robust SEI layer dramatically suppresses swelling and particles crossover through separator,and therefore prevents short circuit,demonstrating a possible operation of pure Si or Sidominant anodes in the next-generation high-energy-density and safe LIBs.展开更多
Zirconium alloys are active in the molten state and tend to react with the mold during casting. The casting technology of zirconium is not yet well established; especially in selecting the mold materials, which are di...Zirconium alloys are active in the molten state and tend to react with the mold during casting. The casting technology of zirconium is not yet well established; especially in selecting the mold materials, which are difficult to determine. In the present work, the interfacial reactions between zirconium casting and casting mold were studied. The zirconium alloy was melted in a vacuum arc skull furnace and then cast into the graphite mold and ceramic mold, respectively. The zirconium casting samples were characterized using SEM, EDS and XRD with an emphasis on the chemical diffusion of elements. A reaction layer was observed at the casting surface. Chemical analysis shows that chemical elements C, O and Y from the mold are diffused into the molten zirconium, and new phases, such as ZrC, Zr30, YO1.335 and Y6ZrO11, are formed at the surface. In addition, an end product of zirconium valve cast in a yttria mold has a compact structure and good surface quality.展开更多
Multi-element doped graphite, GBST1308 has been developed as a plasma facing material (PFM) for high heat flux components of the HT-7U device. The thermal performance of the material under steady-state (SS) high heat ...Multi-element doped graphite, GBST1308 has been developed as a plasma facing material (PFM) for high heat flux components of the HT-7U device. The thermal performance of the material under steady-state (SS) high heat flux was evaluated under actively cooling conditions, the specimens were mechanically joined to copper heat sink with supercarbon sheet as a compliant layer between the interfaces. The experiments have been performed in a facility of ACT (actively cooling test stand) with a 100 kW electron gun in order to test the suitability and the loading limit of such materials. The surface temperature and bulk temperature distribution of the specimens were investigated. The experimental results are very encouraging that when heat flux is not more than 6 MW/m2, the surface temperature of GBST1308 is less than 1000℃, which is the lowest, compared with IG-430U and even with CX-2002U (CFC); The primary results indicate that the mechanically-joined material system by such a proper design as thin tile, super compliant layer, GBST as a PFM and copper-alloy heat sink, can be used as divertor plates for HT-7U in the first phase.展开更多
The energy density of commercial lithium(Li)ion batteries with graphite anode is reaching the limit.It is believed that directly utilizing Li metal as anode without a host could enhance the battery’s energy density t...The energy density of commercial lithium(Li)ion batteries with graphite anode is reaching the limit.It is believed that directly utilizing Li metal as anode without a host could enhance the battery’s energy density to the maximum extent.However,the poor reversibility and infinite volume change of Li metal hinder the realistic implementation of Li metal in battery community.Herein,a commercially viable hybrid Li-ion/metal battery is realized by a coordinated strategy of symbiotic anode and prelithiated cathode.To be specific,a scalable template-removal method is developed to fabricate the porous graphite layer(PGL),which acts as a symbiotic host for Li ion intercalation and subsequent Li metal deposition due to the enhanced lithiophilicity and sufficient ion-conducting pathways.A continuous dissolution-deintercalation mechanism during delithiation process further ensures the elimination of dead Li.As a result,when the excess plating Li reaches 30%,the PGL could deliver an ultrahigh average Coulombic efficiency of 99.5% for 180 cycles with a capacity of 2.48 m Ah cm^(-2) in traditional carbonate electrolyte.Meanwhile,an air-stable recrystallized lithium oxalate with high specific capacity(514.3 m Ah g^(-1))and moderate operating potential(4.7-5.0 V)is introduced as a sacrificial cathode to compensate the initial loss and provide Li source for subsequent cycles.Based on the prelithiated cathode and initial Li-free symbiotic anode,under a practical-level3 m Ah capacity,the assembled hybrid Li-ion/metal full cell with a P/N ratio(capacity ratio of Li Ni_(0.8)Co_(0.1)Mn_(0.1)O_(2) to graphite)of 1.3exhibits significantly improved capacity retention after 300 cycles,indicating its great potential for high-energy-density Li batteries.展开更多
文摘对化学镀Ni—P— (CF) n 复合镀层工艺进行了较全面的研究 ,详细测定和评述了氟化石墨浓度与镀层中(CF) n 粒子含量及镀速的关系 ,以及基础镀液性质和操作条件 (如温度、pH值、搅拌方式等 )对复合镀的影响。提出了一种具有实用价值的化学镀Ni—P— (CF) n 复合镀层工艺技术。与电镀相比 ,该复合镀层无应力、难以从机体上剥离、硬度高、无磁性、耐热性好。
基金supported by the National Natural Science Foundation of China(T2322015,22209094,22209093,and 22109086)the National Key Research and Development Program(2021YFB2500300)+2 种基金the Open Research Fund of CNMGE Platform&NSCC-TJOrdos-Tsinghua Innovative&Collaborative Research Program in Carbon Neutralitythe Tsinghua University Initiative Scientific Research Program。
文摘Electric double layer(EDL)is a critical topic in electrochemistry and largely determines the working performance of lithium batteries.However,atomic insights into the EDL structures on heteroatom-modified graphite anodes and EDL evolution with electrode potential are very lacking.Herein,a constant-potential molecular dynamics(CPMD)method is proposed to probe the EDL structure under working conditions,taking N-doped graphite electrodes and carbonate electrolytes as an example.An interface model was developed,incorporating the electrode potential and atom electronegativities.As a result,an insightful atomic scenario for the EDL structure under varied electrode potentials has been established,which unveils the important role of doping sites in regulating both the EDL structures and the following electrochemical reactions at the atomic level.Specifically,the negatively charged N atoms repel the anions and adsorb Li~+at high and low potentials,respectively.Such preferential adsorption suggests that Ndoped graphite can promote Li~+desolvation and regulate the location of Li~+deposition.This CPMD method not only unveils the mysterious function of N-doping from the viewpoint of EDL at the atomic level but also applies to probe the interfacial structure on other complicated electrodes.
基金supported by the National Research Foundation grants funded by the Ministry of Science and ICT of Korea(2021M3H4A3A02086211 and RS-2023-00217581).
文摘Incorporation of higher content Si anode material beyond 5 wt% to Li-ion batteries(LIBs)is challenging,owing to large volume change,swelling,and solid electrolyte interphase(SEI)instability issues.Herein,a strategy of diacetoxydimethylsilane(DAMS)additive-directed SEI stabilization is proposed for a stable operation of Si-0.33FeSi_(2)(named as Si-Fe)anode without graphite,which provides siloxane inorganics and organics enrichment that compensate insufficient passivation of fluoroethylene carbonate(FEC)additive and reduce a dependence on FEC.Unprecedented stable cycling performance of highly loaded(3.5 mA h cm^(-2))pure Si-Fe anode is achieved with 2 wt%DAMS combined with 9 wt%FEC additives under ambient pressure,yielding high capacity 1270 mA h g^(-1)at 0.5 C and significantly improved capacity retention of 81% after 100 cycles,whereas short circuit and rapid capacity fade occur with FEC only additive.DAMS-directed robust SEI layer dramatically suppresses swelling and particles crossover through separator,and therefore prevents short circuit,demonstrating a possible operation of pure Si or Sidominant anodes in the next-generation high-energy-density and safe LIBs.
基金supported by the National Natural Science Foundation of China(No.51075285) the Provincial Natural Science Foundation of Liaoning in China(No.20102222)
文摘Zirconium alloys are active in the molten state and tend to react with the mold during casting. The casting technology of zirconium is not yet well established; especially in selecting the mold materials, which are difficult to determine. In the present work, the interfacial reactions between zirconium casting and casting mold were studied. The zirconium alloy was melted in a vacuum arc skull furnace and then cast into the graphite mold and ceramic mold, respectively. The zirconium casting samples were characterized using SEM, EDS and XRD with an emphasis on the chemical diffusion of elements. A reaction layer was observed at the casting surface. Chemical analysis shows that chemical elements C, O and Y from the mold are diffused into the molten zirconium, and new phases, such as ZrC, Zr30, YO1.335 and Y6ZrO11, are formed at the surface. In addition, an end product of zirconium valve cast in a yttria mold has a compact structure and good surface quality.
基金This work was supported by National Meg-Science Engineering Project of Chinese Gevernment.
文摘Multi-element doped graphite, GBST1308 has been developed as a plasma facing material (PFM) for high heat flux components of the HT-7U device. The thermal performance of the material under steady-state (SS) high heat flux was evaluated under actively cooling conditions, the specimens were mechanically joined to copper heat sink with supercarbon sheet as a compliant layer between the interfaces. The experiments have been performed in a facility of ACT (actively cooling test stand) with a 100 kW electron gun in order to test the suitability and the loading limit of such materials. The surface temperature and bulk temperature distribution of the specimens were investigated. The experimental results are very encouraging that when heat flux is not more than 6 MW/m2, the surface temperature of GBST1308 is less than 1000℃, which is the lowest, compared with IG-430U and even with CX-2002U (CFC); The primary results indicate that the mechanically-joined material system by such a proper design as thin tile, super compliant layer, GBST as a PFM and copper-alloy heat sink, can be used as divertor plates for HT-7U in the first phase.
基金the support by the Key-Area Research and Development Program of Guangdong Province(No.2020B090919003)the National Nature Science Foundation of China(Nos.51872157 and 52072208)+4 种基金the Shenzhen Technical Plan Project(Nos.JCYJ20170817161753629 and JCYJ20170412170911187)the Special Fund Project for Strategic Emerging Industry Development of Shenzhen(No.20170428145209110)the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program(No.2017BT01N111)the Support Plan for Shenzhen Manufacturing Innovation Center(No.20200627215553988)the Key projects for core technology research of Dongguan(No.2019622119003)。
文摘The energy density of commercial lithium(Li)ion batteries with graphite anode is reaching the limit.It is believed that directly utilizing Li metal as anode without a host could enhance the battery’s energy density to the maximum extent.However,the poor reversibility and infinite volume change of Li metal hinder the realistic implementation of Li metal in battery community.Herein,a commercially viable hybrid Li-ion/metal battery is realized by a coordinated strategy of symbiotic anode and prelithiated cathode.To be specific,a scalable template-removal method is developed to fabricate the porous graphite layer(PGL),which acts as a symbiotic host for Li ion intercalation and subsequent Li metal deposition due to the enhanced lithiophilicity and sufficient ion-conducting pathways.A continuous dissolution-deintercalation mechanism during delithiation process further ensures the elimination of dead Li.As a result,when the excess plating Li reaches 30%,the PGL could deliver an ultrahigh average Coulombic efficiency of 99.5% for 180 cycles with a capacity of 2.48 m Ah cm^(-2) in traditional carbonate electrolyte.Meanwhile,an air-stable recrystallized lithium oxalate with high specific capacity(514.3 m Ah g^(-1))and moderate operating potential(4.7-5.0 V)is introduced as a sacrificial cathode to compensate the initial loss and provide Li source for subsequent cycles.Based on the prelithiated cathode and initial Li-free symbiotic anode,under a practical-level3 m Ah capacity,the assembled hybrid Li-ion/metal full cell with a P/N ratio(capacity ratio of Li Ni_(0.8)Co_(0.1)Mn_(0.1)O_(2) to graphite)of 1.3exhibits significantly improved capacity retention after 300 cycles,indicating its great potential for high-energy-density Li batteries.