期刊文献+
共找到205篇文章
< 1 2 11 >
每页显示 20 50 100
基于图学习的自动图像标注 被引量:42
1
作者 卢汉清 刘静 《计算机学报》 EI CSCD 北大核心 2008年第9期1629-1639,共11页
自动图像标注是图像检索任务中重要而具有挑战性的工作.文中首先讨论并解释了自动图像标注问题,通过总结现有的研究工作,提出了一种基于图学习的图像标注框架.在该框架下,图像标注被分为两个阶段来完成,即基本图像标注与图像标注改善.其... 自动图像标注是图像检索任务中重要而具有挑战性的工作.文中首先讨论并解释了自动图像标注问题,通过总结现有的研究工作,提出了一种基于图学习的图像标注框架.在该框架下,图像标注被分为两个阶段来完成,即基本图像标注与图像标注改善.其中,前者是通过以图像间相似性为依据的图学习过程来提供图像的初始标注,而后者是通过以词汇间语义相关性为依据的图学习过程来改善前者取得的标注结果.该框架主要涉及到图像与文本词汇两种媒体的内部和相互之间的各种关系的估计问题.基于此,作者又给出了针对上述各子问题的改进方法,并将它们综合起来实现了有效的图像标注.最后,通过Corel图像集与网络数据集上一系列实验结果,验证了该模型框架及所提出解决方案的有效性. 展开更多
关键词 图像标注 图学习 图像相似性 词义相关性
下载PDF
自动图像标注技术研究进展 被引量:21
2
作者 鲍泓 徐光美 +1 位作者 冯松鹤 须德 《计算机科学》 CSCD 北大核心 2011年第7期35-40,共6页
近年来,自动图像标注(Automatic Image Annotation,AIA)技术已经成为图像语义理解研究领域的热点。其基本思想是利用已标注图像集或其他可获得的信息自动学习语义概念空间与视觉特征空间的潜在关联或者映射关系,来预测未知图像的标注。... 近年来,自动图像标注(Automatic Image Annotation,AIA)技术已经成为图像语义理解研究领域的热点。其基本思想是利用已标注图像集或其他可获得的信息自动学习语义概念空间与视觉特征空间的潜在关联或者映射关系,来预测未知图像的标注。随着机器学习理论的不断发展,包括相关模型、分类器模型等不同的学习模型已经被广泛地应用于自动图像标注研究领域。现有的自动图像标注算法可以大致分为基于分类的标注算法、基于概率关联模型的标注算法以及基于图学习的标注算法等三大类。首先根据自动图像标注算法的特征提取及表示机制不同,将现有算法划分为基于全局特征和基于区域划分的自动图像标注方法。其次,在基于区域划分的自动图像标注算法中,按照学习算法的不同,将其划分为基于分类的标注方法、基于概率关联模型的标注方法以及基于图学习的标注方法,并分别介绍各类别中具有代表性的标注算法及其优缺点。然后给出了自动图像标注最新的研究进展,最后探讨自动图像标注的进一步研究方向。 展开更多
关键词 自动图像标注 多示例学习 多标记学习 图学习 概率建模
下载PDF
一种融合图学习与区域显著性分析的图像检索算法 被引量:17
3
作者 冯松鹤 郎丛妍 须德 《电子学报》 EI CAS CSCD 北大核心 2011年第10期2288-2294,共7页
为弥合图像低层视觉特征和高层语义之间的语义鸿沟,改善图像检索的效果,机器学习算法经常被引入到图像检索问题中.通常情况下,机器学习算法是与相关反馈机制相结合,通过用户的交互操作,标定出若干正反例图像,很自然地就可以将图像检索... 为弥合图像低层视觉特征和高层语义之间的语义鸿沟,改善图像检索的效果,机器学习算法经常被引入到图像检索问题中.通常情况下,机器学习算法是与相关反馈机制相结合,通过用户的交互操作,标定出若干正反例图像,很自然地就可以将图像检索问题转化为模式识别中的分类问题.目前融合区域显著性分析的区域图像检索算法尚没有与机器学习算法相融合.本文结合图像区域显著性分析,并针对用户参与反馈的情况,分别提出了两种图像检索解决方案.其一,在没有用户反馈以及用户只反馈正例图像的情形下,将图像检索问题转化为直推式学习问题(Transductive Learning),改进已有的基于图的半监督学习算法,提出了融合区域显著性分析的层次化图表示(Hierarchi-cal Graph Representation)方式,用以实现标记传播;其二,在用户同时反馈正反例图像的情形下,利用用户反馈得到的正反例图像构建相似性邻接矩阵,通过流形排序算法(Manifold-Ranking)学习出用户感兴趣的查询目标概念并用相应的特征向量集合表示,并据此查询图像库返回用户语义相关的图像集合.实验结果验证了这两种检索策略的有效性. 展开更多
关键词 图像检索 区域显著性 图学习 流形排序 相关反馈
下载PDF
分组排序多特征融合的图像检索方法 被引量:12
4
作者 刘胜蓝 冯林 +1 位作者 孙木鑫 刘洋 《计算机研究与发展》 EI CSCD 北大核心 2017年第5期1067-1076,共10页
在图像检索中,多特征图融合方法大多仅对最近邻域进行融合.当每个特征的近邻图排序结果较差时,融合后的新图难以得到理想的检索效果.为了解决该问题,提出一种新的多特征图融合图像检索方法——分组排序融合(group ranking fusion,GRF),... 在图像检索中,多特征图融合方法大多仅对最近邻域进行融合.当每个特征的近邻图排序结果较差时,融合后的新图难以得到理想的检索效果.为了解决该问题,提出一种新的多特征图融合图像检索方法——分组排序融合(group ranking fusion,GRF),该方法将数据集合中的相似图片划分为图片组,利用相似图片组对近邻图的检索结果进行改进,在保持精度的前提下扩充了融合范围.最后,在3个标准数据集上的实验结果表明:多特征融合方法能够有效地利用多特征图提高图像检索效果. 展开更多
关键词 多特征融合 基于内容的图像检索 规范最小割 图学习 检索重排
下载PDF
基于图学习的推荐系统研究综述 被引量:11
5
作者 程章桃 钟婷 +1 位作者 张晟铭 周帆 《计算机科学》 CSCD 北大核心 2022年第9期1-13,共13页
协同过滤是一种被广泛应用于推荐系统中的方法,其利用不同用户之间(或不同物品之间)的相似性关系来过滤和抽取用户和物品的交互信息,从而进行用户推荐。近年来,图神经网络因其出色的表示学习性能和良好的可扩展性逐渐成为推荐领域中的... 协同过滤是一种被广泛应用于推荐系统中的方法,其利用不同用户之间(或不同物品之间)的相似性关系来过滤和抽取用户和物品的交互信息,从而进行用户推荐。近年来,图神经网络因其出色的表示学习性能和良好的可扩展性逐渐成为推荐领域中的一种新兴的范式。文中从图学习角度对近年来推荐领域的研究进行系统性的回顾与总结。首先,根据数据类型将推荐场景分成两类,包括基于交互信息的推荐系统(将用户与物品交互数据作为关键数据源)和辅助信息增强的推荐系统(融入与用户和物品相关联的社交信息和知识图谱信息);其次,从随机游走、图表示学习和图神经网络方面入手,对不同推荐场景中的方法、关键技术、主要难点和重要进展进行回顾与总结;最后,总结关于图学习方法在推荐领域中面临的挑战和未来的主要研究方向。 展开更多
关键词 推荐系统 协同过滤 图学习
下载PDF
视图关系学习与图学习的多视图图聚类
6
作者 袁柱 高清维 +4 位作者 王琳 赵大卫 卢一相 孙冬 竺德 《计算机科学与探索》 CSCD 北大核心 2023年第10期2435-2449,共15页
简单高效的多视图图聚类方法近年来受到广泛关注。大多数现有的多视图图聚类算法对隐藏在多视图数据中的信息挖掘不够充分,导致次优的聚类结果。为解决这一问题,提出一种结合视图关系学习与图学习的多视图图聚类算法(MVG)。该方法在一... 简单高效的多视图图聚类方法近年来受到广泛关注。大多数现有的多视图图聚类算法对隐藏在多视图数据中的信息挖掘不够充分,导致次优的聚类结果。为解决这一问题,提出一种结合视图关系学习与图学习的多视图图聚类算法(MVG)。该方法在一个统一的框架中基于多视图自表达来整合图融合与谱聚类学习。扩展了视图自表达学习,揭示了高维数据的低维子空间分布,联合约束了多视图数据分布的几何结构。并且利用多视图视图数据之间的互补信息,优化每个视图的相似图。交替优化谱聚类输入图和不同视图所占权重。最后通过对融合图图结构的学习,建立了与谱聚类的联系,构建了一个高质量的谱聚类输入图。充分挖掘和利用隐藏在多视图数据中的信息,在提升聚类性能方面有很强的竞争性。在五个广泛使用的多视图数据集上进行实验,验证算法的有效性和可行性。在reuters-1200数据集上的实验数据表明,在聚类评价指标上分别比次优方法提升0.22、0.09、0.115、0.152、0.032和0.185。 展开更多
关键词 多视图图聚类 互补信息 视图关系学习 图学习 图融合
下载PDF
MoGE:基于图上下文增强的多任务推荐算法 被引量:1
7
作者 周俊 胡斌斌 +1 位作者 张志强 陈超超 《电子学报》 EI CAS CSCD 北大核心 2023年第11期3377-3387,共11页
多任务学习(Multi-Task Learning,MTL)通过信息共享来共同处理多个任务,已被广泛应用于大量推荐任务中.目前针对推荐的多任务学习方法,主要集中在基于共享输入特征(即描述用户-商品交互信息的特征工程)的多门控混合专家网络(Multi-gate ... 多任务学习(Multi-Task Learning,MTL)通过信息共享来共同处理多个任务,已被广泛应用于大量推荐任务中.目前针对推荐的多任务学习方法,主要集中在基于共享输入特征(即描述用户-商品交互信息的特征工程)的多门控混合专家网络(Multi-gate Mixture-of-Experts,MMoE),以此来学习不同任务间的关联.最近的一些工作表明,图神经网络(Graph Neural Network,GNN)作为表征深度交互上下文的强大工具,被应用于推荐任务中,可极大地缓解在线个性化推荐服务中的数据稀疏问题.因此,我们通过设计混合图增强专家网络(Mixture of Graph enhanced Expert networks,MoGE),首次探索了用于多任务推荐的图神经网络结构.具体地说,我们提出了一种新的多通道图神经网络,利用用户-商品二部图,以及衍生的用户和商品的协同相似图来联合建模用户-商品的高阶交互信息.在学习到的深层次交互上下文的基础上,引入了一组图增强的专家网络,以协作的方式实现多任务推荐.在3个真实数据集上的实验结果表明,MoGE在所有目标任务上都持续且显著地优于最优的基线. 展开更多
关键词 多任务学习 图学习 推荐算法 注意力机制 深度学习
下载PDF
基于图学习的缺失脑网络生成及多模态融合诊断方法
8
作者 龚荣芳 黄麟雅 +1 位作者 朱旗 李胜荣 《数据采集与处理》 CSCD 北大核心 2024年第4期843-862,共20页
融合大脑结构和功能网络的多模态脑网络能够挖掘不同模态间的互补信息,有效提高癫痫等神经系统疾病的诊断准确率,在神经疾病诊断上具有优势。然而,由于多模态数据采集时间长、成本高,在实际应用中常面临模态缺失问题,导致可用数据量减少... 融合大脑结构和功能网络的多模态脑网络能够挖掘不同模态间的互补信息,有效提高癫痫等神经系统疾病的诊断准确率,在神经疾病诊断上具有优势。然而,由于多模态数据采集时间长、成本高,在实际应用中常面临模态缺失问题,导致可用数据量减少,模型的诊断精度和泛化能力下降。针对某一模态数据完全缺失问题,提出了基于图学习与循环一致生成对抗网络(Cycle-consistent generative adversarial networks,CycleGAN)的图CycleGAN方法。该方法通过引入图卷积神经网络与图注意力机制等图学习方法捕捉脑网络不同脑区间的特征信息,强化生成框架对图形式脑网络的特征提取能力,实现脑结构网络与功能网络的相互生成。此外,针对目前较少利用诊断结果评估生成数据质量的情况,提出了一种融合真实脑网络与生成脑网络的多模态融合分类模型,以进一步评估生成脑网络的有效性。在癫痫数据集上的实验结果表明,图CycleGAN方法能够有效利用已有的模态信息,实现缺失脑网络的生成。 展开更多
关键词 脑网络 模态缺失 图学习 生成对抗网络 模态补全 癫痫诊断
下载PDF
基于加权张量低秩约束的多视图谱聚类
9
作者 刘思慧 高全学 +1 位作者 宋伟 谢德燕 《计算机工程》 CSCD 北大核心 2024年第1期129-137,共9页
现有基于图的多视图聚类方法通常难以同时考虑不同视图的潜在高阶相关信息和每个视图内的全局几何结构,导致聚类性能受限。为此,提出一种基于加权张量低秩约束的多视图谱聚类方法(WTLR-MSC)。根据多视图数据构建概率转移矩阵,将所有的... 现有基于图的多视图聚类方法通常难以同时考虑不同视图的潜在高阶相关信息和每个视图内的全局几何结构,导致聚类性能受限。为此,提出一种基于加权张量低秩约束的多视图谱聚类方法(WTLR-MSC)。根据多视图数据构建概率转移矩阵,将所有的概率转移矩阵构建为三阶张量,并借助鲁棒主成分分析思想将其分解为目标张量和误差张量。使用加权张量核范数约束目标张量的旋转张量,利用奇异值先验信息准确挖掘多视图数据的潜在高阶相关信息,并利用核范数约束目标张量的每个正切片以刻画每个视图内的全局几何结构。基于此建立数学模型,并设计有效的求解算法。在BBCSport、BBC4View、COIL20、UCI Digits 4个常用数据集上的实验结果表明,WTLR-MSC较ERLRT、MCA~2M、MGL-WTNN等聚类方法的性能有显著提升,准确率、标准化互信息、F1值、精确率、召回率相较于次优方法最高提升约1.3、1.0、1.2、1.6和0.8个百分点,大幅增强了多视图聚类的稳健性。 展开更多
关键词 加权张量核范数 谱聚类 多视图谱聚类 图学习 张量低秩
下载PDF
基于一致引导的不完全多视图聚类
10
作者 安萍 彭军龙 《计算机应用与软件》 北大核心 2024年第5期254-263,共10页
为了解决传统聚类方法存在的效果差、泛化能力弱等问题,提出一种基于一致引导的不完全多视图聚类方法。将图学习和一致性表示学习集成到一个联合框架中,从而充分利用多视图数据信息。引入的自适应学习权值向量可以平衡不同视图的影响,... 为了解决传统聚类方法存在的效果差、泛化能力弱等问题,提出一种基于一致引导的不完全多视图聚类方法。将图学习和一致性表示学习集成到一个联合框架中,从而充分利用多视图数据信息。引入的自适应学习权值向量可以平衡不同视图的影响,联合正则化表示学习策略则为一致表示学习提供了更大的自由度。提出交替迭代优化算法对聚类进行优化。在七个数据集上的实验结果表明,提出的方法能够有效提升不完全多视图聚类的效果。 展开更多
关键词 多视图聚类 一致引导 图学习 正则化 自适应
下载PDF
图学习隐私与安全问题研究综述 被引量:1
11
作者 先兴平 吴涛 +2 位作者 乔少杰 吴渝 刘宴兵 《计算机学报》 EI CAS CSCD 北大核心 2023年第6期1184-1212,共29页
虽然海量的现实需求为人工智能提供了广阔的应用场景,但要求人工智能系统适应复杂的计算环境.然而,传统人工智能算法的研究都假设其应用环境是安全可控的.大量研究和实践工作表明当前的人工智能技术普遍对外在风险考虑不足,相关数据和... 虽然海量的现实需求为人工智能提供了广阔的应用场景,但要求人工智能系统适应复杂的计算环境.然而,传统人工智能算法的研究都假设其应用环境是安全可控的.大量研究和实践工作表明当前的人工智能技术普遍对外在风险考虑不足,相关数据和模型算法存在隐私与安全风险.由于人工智能安全的现实需求以及图学习的巨大影响,图学习的隐私与安全问题成为当前图学习领域面临的重要挑战.为此,研究人员近年来从图学习系统的各个环节出发对图学习隐私与安全问题进行了研究,提出了相关的攻击和防御方法.本综述首先阐述研究图学习隐私与安全的重要意义,然后介绍图学习系统的基本过程、图学习面临的主要隐私与安全威胁以及图学习的隐私与安全特性;在上述基础上,分别从图数据隐私、图数据安全、图模型隐私和图模型安全四个方面对现有研究工作进行系统的归纳总结,讨论主要成果和不足;最后,介绍相关的开放资源,并从数据特征、解释性、研究体系和实际应用等方面探讨面临的挑战和未来的研究方向. 展开更多
关键词 图挖掘 图学习 安全可信 隐私保护 对抗攻击
下载PDF
基于实时动态图联合学习框架的金融交易风控技术
12
作者 周俊 曹月恬 +2 位作者 胡斌斌 张志强 陈超超 《电子学报》 EI CAS CSCD 北大核心 2023年第10期2801-2811,共11页
金融交易风险防控是金融风控平台最重要的能力之一.近年来,随着金融风控平台智能化需求的不断升级,对其中相关应用算法的性能要求也水涨船高.目前业界已完成了两代针对金融交易行为的表征学习框架的迭代升级.第一代框架引入了金融交易... 金融交易风险防控是金融风控平台最重要的能力之一.近年来,随着金融风控平台智能化需求的不断升级,对其中相关应用算法的性能要求也水涨船高.目前业界已完成了两代针对金融交易行为的表征学习框架的迭代升级.第一代框架引入了金融交易活动参与者自身的历史行为序列,利用序列模型学习其历史行为特征.第二代框架通过一套实时大数据系统对资金流图进行建模,根据业务专家预定义的业务规则计算出需要的实时特征,并将其输入到后续的判别模型中.相比第一代,第二代框架引入了更多实时动态资金流图上的交互信息,因而取得了不错的性能提升.然而,第二代框架在精细化、智能化和时序建模方面仍存在较大不足.为了解决这些问题,本文针对性地设计了第三代框架,该框架通过动态图表征学习算法,从实时资金流图的原始数据中直接进行表征学习,以此规避了第二代框架中的诸多问题.总的来说,本文在时序信息建模和动态图框架层面均进行了创新性设计.在时序信息建模层面,利用了C2GAT模块(连续时间和上下文感知的图注意力神经网络),在动态多变的资金流图上快速地捕捉了高阶的结构化时序状态与信息.在动态图框架层面,开发了一套联合实时动态图表征框架——RULF,该框架可以实时刻画出金融场景中多用户资金行为中存在的特定模式.将金融场景中多角色联合行为和单角色独立行为进行了显式地解耦,并将多个子图模块联合起来学习,通过学习到更精准的行为表征,从而更进一步地提高下游判别模型的性能.本文将以花呗套现交易识别—一个典型的金融交易风控场景为例,介绍该框架在实际业务场景中的设计思想和实现细节. 展开更多
关键词 时序建模 实时动态图 图学习 注意力机制 深度学习 系统框架
下载PDF
Semi-Supervised Graph Learning for Brain Disease Identification
13
作者 Kunpeng Zhang Yining Zhang Xueyan Liu 《Journal of Applied Mathematics and Physics》 2023年第7期1846-1859,共14页
Using resting-state functional magnetic resonance imaging (fMRI) technology to assist in identifying brain diseases has great potential. In the identification of brain diseases, graph-based models have been widely use... Using resting-state functional magnetic resonance imaging (fMRI) technology to assist in identifying brain diseases has great potential. In the identification of brain diseases, graph-based models have been widely used, where graph represents the similarity between patients or brain regions of interest. In these models, constructing high-quality graphs is of paramount importance. Researchers have proposed various methods for constructing graphs from different perspectives, among which the simplest and most popular one is Pearson Correlation (PC). Although existing methods have achieved significant results, these graphs are usually fixed once they are constructed, and are generally operated separately from downstream task. Such a separation may result in neither the constructed graph nor the extracted features being ideal. To solve this problem, we use the graph-optimized locality preserving projection algorithm to extract features and the population graph simultaneously, aiming in higher identification accuracy through a task-dependent automatic optimization of the graph. At the same time, we incorporate supervised information to enable more flexible modelling. Specifically, the proposed method first uses PC to construct graph as the initial feature for each subject. Then, the projection matrix and graph are iteratively optimized through graph-optimization locality preserving projections based on semi-supervised learning, which fully employs the knowledge in various transformation spaces. Finally, the obtained projection matrix is applied to construct the subject-level graph and perform classification using support vector machines. To verify the effectiveness of the proposed method, we conduct experiments to identify subjects with mild cognitive impairment (MCI) and Autism spectrum disorder (ASD) from normal controls (NCs), and the results showed that the classification performance of our method is better than that of the baseline method. 展开更多
关键词 graph learning Mild Cognitive Impairment Autism Spectrum Disorder
下载PDF
基于一步张量学习的多视图子空间聚类
14
作者 赵晓佳 徐婷婷 +1 位作者 陈勇勇 徐勇 《自动化学报》 EI CAS CSCD 北大核心 2023年第1期40-53,共14页
现有多视图子空间聚类算法通常先进行张量表示学习,进而将学习到的表示张量融合为统一的亲和度矩阵.然而,因其独立地学习表示张量和亲和度矩阵,忽略了两者之间的高度相关性.为了解决此问题,提出一种基于一步张量学习的多视图子空间聚类... 现有多视图子空间聚类算法通常先进行张量表示学习,进而将学习到的表示张量融合为统一的亲和度矩阵.然而,因其独立地学习表示张量和亲和度矩阵,忽略了两者之间的高度相关性.为了解决此问题,提出一种基于一步张量学习的多视图子空间聚类方法,联合学习表示张量和亲和度矩阵.具体地,该方法对表示张量施加低秩张量约束,以挖掘视图的高阶相关性.利用自适应最近邻法对亲和度矩阵进行灵活重建.使用交替方向乘子法对模型进行优化求解,通过对真实多视图数据的实验表明,较于最新的多视图聚类方法,提出的算法具有更好的聚类准确性. 展开更多
关键词 多视图子空间聚类 张量奇异值分解 一步化学习 图学习
下载PDF
稀疏表示一致性引导的多视图降维算法
15
作者 杨在春 魏巍 +1 位作者 岳琴 王锋 《小型微型计算机系统》 CSCD 北大核心 2023年第8期1637-1643,共7页
现有基于图的多视图降维方法大多将构图和降维两个过程独立执行,因此构图的质量直接决定着降维的效果,然而构图是一个开放性的问题.为了缓解上述困难,提出了一种稀疏表示一致性引导的多视图降维算法(MDR_SRC).首先,通过使不同视图下的... 现有基于图的多视图降维方法大多将构图和降维两个过程独立执行,因此构图的质量直接决定着降维的效果,然而构图是一个开放性的问题.为了缓解上述困难,提出了一种稀疏表示一致性引导的多视图降维算法(MDR_SRC).首先,通过使不同视图下的样本保持公共的稀疏表示,挖掘了视图之间的一致性关系;其次,根据样本对稀疏表示系数的差异性指导构图,利用构建的图指导降维;然后将基于稀疏表示的构图与基于图的降维整合为一个优化问题,使构图与降维过程相互指导,从而实现图质量的动态提升;最后,设计了一种迭代地交替策略求解该优化问题.在4个公开数据集上的实验结果表明文中所提的方法优于现有的代表性多视图降维方法. 展开更多
关键词 稀疏表示 图学习 降维 多视图学习 一致性
下载PDF
基于脑电网络图特征的情绪识别研究
16
作者 李存波 杨蕾 +5 位作者 陈昭瑾 汪义锋 李沛洋 李发礼 尧德中 徐鹏 《数据采集与处理》 CSCD 北大核心 2023年第4期815-823,共9页
针对情绪脑电信号提出一种网络图特征学习与情绪识别算法。首先,利用情绪脑电数据构建对应的情绪脑电网络;其次,在由情绪脑电网络尺度定义的高维空间构建脑电网络样本间的局部邻接关系图以挖掘样本集的分布特性,进而得到样本集的图拉普... 针对情绪脑电信号提出一种网络图特征学习与情绪识别算法。首先,利用情绪脑电数据构建对应的情绪脑电网络;其次,在由情绪脑电网络尺度定义的高维空间构建脑电网络样本间的局部邻接关系图以挖掘样本集的分布特性,进而得到样本集的图拉普拉斯矩阵;在此基础上,进一步利用谱图理论对情绪脑电网络的最优低维空间映射进行求解,在保留原始样本局部邻接关系的前提下实现对情绪脑电网络的降维与重新表达,并将每个情绪脑电网络样本表示成1组脑电网络特征集;最后利用提取到的情绪脑电网络特征集,结合支持向量机分类学习算法,针对情绪识别任务进行识别模型的训练和学习,实现对情绪状态的准确解码与识别。在国际公开情绪脑电数据集的实验结果表明:相较于传统情绪识别算法,本文所提方法能有效提升情绪识别准确率,在基于公开数据集的多类情绪识别任务中分别达到91.85%(SEED数据集,3类)、79.36%(MAHNOB-HCI数据集,3类)和79%(DEAP数据集,4类)的稳健识别效果。 展开更多
关键词 情绪识别 脑电图 脑电网络 特征提取 图学习
下载PDF
块对角引导的多视角统一图聚类
17
作者 梁毅聪 张巍 滕少华 《小型微型计算机系统》 CSCD 北大核心 2023年第8期1728-1734,共7页
多视角聚类能够整合多个视角的信息来提高聚类效果,目前很多研究都限于关注多视角一致性,得到的统一相似度图中仍存在许多非同簇之间的关系,甚至当某些簇的噪声达到一定程度时还可能导致统一相似度图难以形成簇的块对角结构.为此,本文... 多视角聚类能够整合多个视角的信息来提高聚类效果,目前很多研究都限于关注多视角一致性,得到的统一相似度图中仍存在许多非同簇之间的关系,甚至当某些簇的噪声达到一定程度时还可能导致统一相似度图难以形成簇的块对角结构.为此,本文提出一种块对角引导的多视角统一图聚类方法,该方法先将不同视角的相似度图分解成一致性部分与不一致性部分;然后通过构造不一致性关系来获得更纯净的一致性部分;进而融合所有视角的一致性部分建立一个相似度图;最后在该相似度图中加入块对角引导和连通分量约束,学习到高质量的统一相似度图.通过在六个数据集上进行对比实验,证明了本文提出的方法的有效性. 展开更多
关键词 多视角聚类 图学习 多视角一致性与不一致性 块对角引导 连通分量约束
下载PDF
基于低秩张量图学习的不完整多视角聚类
18
作者 文杰 颜珂 +1 位作者 张正 徐勇 《自动化学报》 EI CAS CSCD 北大核心 2023年第7期1433-1445,共13页
传统多视角聚类都基于视角完备假设,要求所有样本的视角信息完整,不能处理存在部分视角缺失情形下的不完整多视角聚类任务.为解决该问题,提出一种基于低秩张量图学习的不完整多视角聚类方法.为了恢复相似图中缺失视角所对应的样本关联信... 传统多视角聚类都基于视角完备假设,要求所有样本的视角信息完整,不能处理存在部分视角缺失情形下的不完整多视角聚类任务.为解决该问题,提出一种基于低秩张量图学习的不完整多视角聚类方法.为了恢复相似图中缺失视角所对应的样本关联信息,该方法将低秩张量图约束和视角内在图保持约束融入到多视角谱聚类模型.通过在一个统一模型中同时挖掘视角间的互补信息和视角内未缺失样例的关联信息,所提出的方法能够得到表征样例邻接关系的完整相似图和视角间一致的最优聚类指示矩阵.与12种不完整多视角聚类方法进行实验对比,实验结果表明所提出的方法在多种视角缺失率下的5个数据集上获得了最好的聚类性能. 展开更多
关键词 多视角聚类 视角缺失 不完整多视角聚类 图学习
下载PDF
基于k-近邻局部线性邻域重建的多视角聚类算法
19
作者 马盈仓 吴也凡 +1 位作者 邢志伟 袁林 《纺织高校基础科学学报》 CAS 2023年第3期75-83,共9页
多视图聚类旨在利用不同视图间互为差异、互相补充的信息对数据对象进行聚类,如何融合不同视角的数据是多视角聚类算法的重要问题之一。为了能更准确有效地刻画视角间的相似关系,提出一种基于k-近邻局部线性邻域重建的多视角聚类算法。... 多视图聚类旨在利用不同视图间互为差异、互相补充的信息对数据对象进行聚类,如何融合不同视角的数据是多视角聚类算法的重要问题之一。为了能更准确有效地刻画视角间的相似关系,提出一种基于k-近邻局部线性邻域重建的多视角聚类算法。首先,利用数据点间的距离分配概率近邻,得到各视角数据对应的相似矩阵;其次,通过引入k-近邻,对各视角相似矩阵进行局部线性邻域重建后融合为统一的相似矩阵;同时,引入HSIC刻画不同视角的多样性。通过将统一图的学习与多样性学习整合在统一的框架中,本模型有能力输出一个包含了各视图多样信息的融合图。通过交替迭代算法,所提模型可以被很好地优化。多个公开数据集上的对比实验证明了所提出算法的有效性优于其他已有算法。 展开更多
关键词 多视角聚类 图学习 K-近邻 局部线性 希尔伯特-施密特独立准则
下载PDF
图学习的区域图像标注方法 被引量:1
20
作者 虎晓红 钱旭 王珂 《计算机应用》 CSCD 北大核心 2009年第9期2393-2394,2397,共3页
近年来,图像标注技术得到广泛关注。提出一种图学习的自动图像标注方法,将图像标注作为多示例学习框架下的半监督学习策略,通过给出适合图像在包空间的有效度量方式,充分利用未标注样本挖掘图像特征的内在规律性,将半监督学习的方法和... 近年来,图像标注技术得到广泛关注。提出一种图学习的自动图像标注方法,将图像标注作为多示例学习框架下的半监督学习策略,通过给出适合图像在包空间的有效度量方式,充分利用未标注样本挖掘图像特征的内在规律性,将半监督学习的方法和多示例学习有效结合起来,从而获得更准确的标注结果。实验结果表明,提出的标注方法可行,同时标注结果与传统的标注方法相比得到了明显提高。 展开更多
关键词 多示例学习 半监督学习 自动图像标注 图学习 区域匹配
下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部