期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于BiGRU和残差图注意力网络的股票价格预测模型
1
作者 徐渺 王雷春 +2 位作者 史含笑 陈敏 刘丹妮 《湖北大学学报(自然科学版)》 CAS 2024年第2期270-281,共12页
高效、准确的股票价格预测能帮助投资者合理规划交易方式,提高投资收益。针对现有股票价格预测模型的准确率不高、投资收益率低等问题,提出一种结合双向门控循环单元(BiGRU)和残差图注意力网络(ResGAT)的股票价格预测模型(BiGRU-ResGAT... 高效、准确的股票价格预测能帮助投资者合理规划交易方式,提高投资收益。针对现有股票价格预测模型的准确率不高、投资收益率低等问题,提出一种结合双向门控循环单元(BiGRU)和残差图注意力网络(ResGAT)的股票价格预测模型(BiGRU-ResGAT)。首先,通过结合注意力机制的时间滑动窗口方法(TSWMCAM)动态计算不同股票之间的关联系数,构建表征股票之间关联关系的股票图结构;然后,使用BiGRU捕获股票在时序上的长距离依赖信息;最后,利用ResGAT对股票的时序特征与股票间的关联特征进行深度挖掘和融合,并对股票价格进行预测。在上海证券交易所主板市场498支股票上的价格预测结果显示,与支持向量机(SVM)、门控循环单元(GRU)、复合模型(CNN-LSTM)和关系股票排序模型(RSR)相比,BiGRU-ResGAT在股票测试集上平均绝对误差(MAE)分别降低79.53%、63.20%、48.17%、33.19%,均方根误差(RMSE)分别降低80.23%、66.22%、53.99%、29.99%,决定系数(R-Squared)分别提升23.34%、15.22%、9.54%、4.84%;在投资组合上的累计收益率分别提升10.77、7.89、6.81、5.03个百分点。实验结果表明,BiGRU-ResGAT能够有效地挖掘和融合股票数据的关键特征,对股票价格进行预测。 展开更多
关键词 股票价格预测 注意力机制 双向门控循环单元 残差图注意力网络 投资组合
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部