In this paper a hybridized weak Galerkin(HWG) finite element method for solving the Stokes equations in the primary velocity-pressure formulation is introduced.The WG method uses weak functions and their weak derivati...In this paper a hybridized weak Galerkin(HWG) finite element method for solving the Stokes equations in the primary velocity-pressure formulation is introduced.The WG method uses weak functions and their weak derivatives which are defined as distributions.Weak functions and weak derivatives can be approximated by piecewise polynomials with various degrees.Different combination of polynomial spaces leads to different WG finite element methods,which makes WG methods highly flexible and efficient in practical computation.A Lagrange multiplier is introduced to provide a numerical approximation for certain derivatives of the exact solution.With this new feature,the HWG method can be used to deal with jumps of the functions and their flux easily.Optimal order error estimates are established for the corresponding HWG finite element approximations for both primal variables and the Lagrange multiplier.A Schur complement formulation of the HWG method is derived for implementation purpose.The validity of the theoretical results is demonstrated in numerical tests.展开更多
In oil and mineral exploration, gravity gradient tensor data include higher- frequency signals than gravity data, which can be used to delineate small-scale anomalies. However, full-tensor gradiometry (FTG) data are...In oil and mineral exploration, gravity gradient tensor data include higher- frequency signals than gravity data, which can be used to delineate small-scale anomalies. However, full-tensor gradiometry (FTG) data are contaminated by high-frequency random noise. The separation of noise from high-frequency signals is one of the most challenging tasks in processing of gravity gradient tensor data. We first derive the Cartesian equations of gravity gradient tensors under the constraint of the Laplace equation and the expression for the gravitational potential, and then we use the Cartesian equations to fit the measured gradient tensor data by using optimal linear inversion and remove the noise from the measured data. Based on model tests, we confirm that not only this method removes the high- frequency random noise but also enhances the weak anomaly signals masked by the noise. Compared with traditional low-pass filtering methods, this method avoids removing noise by sacrificing resolution. Finally, we apply our method to real gravity gradient tensor data acquired by Bell Geospace for the Vinton Dome at the Texas-Louisiana border.展开更多
A new framework based on the curved Riemannian manifold is proposed to calculate the numerical solution of the Lyapunov matrix equation by using a natural gradient descent algorithm and taking the geodesic distance as...A new framework based on the curved Riemannian manifold is proposed to calculate the numerical solution of the Lyapunov matrix equation by using a natural gradient descent algorithm and taking the geodesic distance as the objective function. Moreover, a gradient descent algorithm based on the classical Euclidean distance is provided to compare with this natural gradient descent algorithm. Furthermore, the behaviors of two proposed algorithms and the conventional modified conjugate gradient algorithm are compared and demonstrated by two simulation examples. By comparison, it is shown that the convergence speed of the natural gradient descent algorithm is faster than both of the gradient descent algorithm and the conventional modified conjugate gradient algorithm in solving the Lyapunov equation.展开更多
For Sobolev equation, we present a new numerical scheme based on a modified weak Galerkin finite element method, in which differential operators are approximated by weak forms through the usual integration by parts. I...For Sobolev equation, we present a new numerical scheme based on a modified weak Galerkin finite element method, in which differential operators are approximated by weak forms through the usual integration by parts. In particular, the numerical method allows the use of discontinuous finite element functions and arbitrary shape of element. Optimal order error estimates in discrete H^1 and L^2 norms are established for the corresponding modified weak Galerkin finite element solutions. Finally, some numerical results are given to verify theoretical results.展开更多
The optimum planning of industrial pollutant sources, which optimizes the economic object without violating environmental constraints, is an important and hard task to be conquered. In this paper, an adjoint method is...The optimum planning of industrial pollutant sources, which optimizes the economic object without violating environmental constraints, is an important and hard task to be conquered. In this paper, an adjoint method is developed to solve the problem. The penalty function is in-troduced to deal with the environmental inequality constraints, and Lagrange function is con-structed to derive the adjoint equation and the gradient of the object function. In this means, the gradient of the object function can be calculated by solving the adjoint equation, and the infor-mation from the gradient is used to make the object function descend and approach to an optimal solution after some iterations. A two-dimensional, simplified model is used for numerical experi-ments. The theoretical derivations are verified by the results of the experiments. Furthermore, the adjoint method is shown to be of excellent convergence and efficiency, which is adaptive to the fast development of air quality numerical models and super computers.展开更多
基金supported by National Natural Science Foundation of China(Grant Nos.11271157,11371171 and 11471141)the Program for New Century Excellent Talents in University of Ministry of Education of China
文摘In this paper a hybridized weak Galerkin(HWG) finite element method for solving the Stokes equations in the primary velocity-pressure formulation is introduced.The WG method uses weak functions and their weak derivatives which are defined as distributions.Weak functions and weak derivatives can be approximated by piecewise polynomials with various degrees.Different combination of polynomial spaces leads to different WG finite element methods,which makes WG methods highly flexible and efficient in practical computation.A Lagrange multiplier is introduced to provide a numerical approximation for certain derivatives of the exact solution.With this new feature,the HWG method can be used to deal with jumps of the functions and their flux easily.Optimal order error estimates are established for the corresponding HWG finite element approximations for both primal variables and the Lagrange multiplier.A Schur complement formulation of the HWG method is derived for implementation purpose.The validity of the theoretical results is demonstrated in numerical tests.
基金financially supported by the SinoProbe-09-01(201011078)
文摘In oil and mineral exploration, gravity gradient tensor data include higher- frequency signals than gravity data, which can be used to delineate small-scale anomalies. However, full-tensor gradiometry (FTG) data are contaminated by high-frequency random noise. The separation of noise from high-frequency signals is one of the most challenging tasks in processing of gravity gradient tensor data. We first derive the Cartesian equations of gravity gradient tensors under the constraint of the Laplace equation and the expression for the gravitational potential, and then we use the Cartesian equations to fit the measured gradient tensor data by using optimal linear inversion and remove the noise from the measured data. Based on model tests, we confirm that not only this method removes the high- frequency random noise but also enhances the weak anomaly signals masked by the noise. Compared with traditional low-pass filtering methods, this method avoids removing noise by sacrificing resolution. Finally, we apply our method to real gravity gradient tensor data acquired by Bell Geospace for the Vinton Dome at the Texas-Louisiana border.
文摘A new framework based on the curved Riemannian manifold is proposed to calculate the numerical solution of the Lyapunov matrix equation by using a natural gradient descent algorithm and taking the geodesic distance as the objective function. Moreover, a gradient descent algorithm based on the classical Euclidean distance is provided to compare with this natural gradient descent algorithm. Furthermore, the behaviors of two proposed algorithms and the conventional modified conjugate gradient algorithm are compared and demonstrated by two simulation examples. By comparison, it is shown that the convergence speed of the natural gradient descent algorithm is faster than both of the gradient descent algorithm and the conventional modified conjugate gradient algorithm in solving the Lyapunov equation.
基金Acknowldgements. The authors would like to express their sincere thanks to the editor and referees for their very helpful comments and suggestions, which greatly improved the quality of this paper. We also would like to thank Dr. Xiu Ye for useful discussions. The first author's research is partially supported by the Natural Science Foundation of Shandong Province of China grant ZR2013AM023, the Project Funded by China Postdoctoral Science Foundation no. 2014M560547, the Fundamental Research Funds of Shandong University no. 2015JC019, and NSAF no. U1430101.
文摘For Sobolev equation, we present a new numerical scheme based on a modified weak Galerkin finite element method, in which differential operators are approximated by weak forms through the usual integration by parts. In particular, the numerical method allows the use of discontinuous finite element functions and arbitrary shape of element. Optimal order error estimates in discrete H^1 and L^2 norms are established for the corresponding modified weak Galerkin finite element solutions. Finally, some numerical results are given to verify theoretical results.
基金the National Natural Science Foundation of China(Grant No.40405025)the research project(Grant No.KZCX2-204)the project“Hundred Talents Project Natural Cybernetics”of Chinese Academy of Sciences,and the State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry(LAPC LAPC-KF-2004-19).
文摘The optimum planning of industrial pollutant sources, which optimizes the economic object without violating environmental constraints, is an important and hard task to be conquered. In this paper, an adjoint method is developed to solve the problem. The penalty function is in-troduced to deal with the environmental inequality constraints, and Lagrange function is con-structed to derive the adjoint equation and the gradient of the object function. In this means, the gradient of the object function can be calculated by solving the adjoint equation, and the infor-mation from the gradient is used to make the object function descend and approach to an optimal solution after some iterations. A two-dimensional, simplified model is used for numerical experi-ments. The theoretical derivations are verified by the results of the experiments. Furthermore, the adjoint method is shown to be of excellent convergence and efficiency, which is adaptive to the fast development of air quality numerical models and super computers.