Let 2m>2, m∈ℤ, be the given even number of the Strong Goldbach Conjecture Problem. Then, m can be called the median of the problem. So, all Goldbach partitions (p,q)exist a relationship, p=m−dand q=m+d, where p≤q...Let 2m>2, m∈ℤ, be the given even number of the Strong Goldbach Conjecture Problem. Then, m can be called the median of the problem. So, all Goldbach partitions (p,q)exist a relationship, p=m−dand q=m+d, where p≤qand d is the distance from m to either p or q. Now we denote the finite feasible solutions of the problem as S(2m)={ (2,2m−2),(3,2m−3),⋅⋅⋅,(m,m) }. If we utilize the Eratosthenes sieve principle to efface those false objects from set S(2m)in pistages, where pi∈P, pi≤2m, then all optimal solutions should be found. The Strong Goldbach Conjecture is true since we proved that at least one optimal solution must exist to the problem. The Weak Goldbach Conjecture is true since it is a special case of the Strong Goldbach Conjecture. Therefore, the Goldbach Conjecture is true.展开更多
This study introduces the representation of natural number sets as row vectors and pretends to offer a new perspective on the strong Goldbach conjecture. The natural numbers are restructured and expanded with the incl...This study introduces the representation of natural number sets as row vectors and pretends to offer a new perspective on the strong Goldbach conjecture. The natural numbers are restructured and expanded with the inclusion of the zero element as the source of a strong Goldbach conjecture reformulation. A prime Boolean vector is defined, pinpointing the positions of prime numbers within the odd number sequence. The natural unit primality is discussed in this context and transformed into a source of quantum-like indetermination. This approach allows for rephrasing the strong Goldbach conjecture, framed within a Boolean scalar product between the prime Boolean vector and its reverse. Throughout the discussion, other intriguing topics emerge and are thoroughly analyzed. A final description of two empirical algorithms is provided to prove the strong Goldbach conjecture.展开更多
The present paper gives the proof of the set of primes as a continuum. It starts with the density of the primes, and shortly recapitulates the prime-number-formula and the complete-prime-number-formula. Reflecting the...The present paper gives the proof of the set of primes as a continuum. It starts with the density of the primes, and shortly recapitulates the prime-number-formula and the complete-prime-number-formula. Reflecting the series of the primes over any prime gives the double density of occupation of integer positions by the union of the series of multiples of the primes. The remaining free positions render it possible to prove Goldbach’s conjecture and the set of primes as a continuum. The theoretical evaluation is followed in annexes by numerical evaluation, demonstrating the theoretical results. The numerical evaluation results in different constants and relations, which represent inherent properties of the set of primes.展开更多
The present paper gives the proof of the set of primes as continuum and evaluates the analytical formula for the integral of the inverse of the primes over the distance. First it starts with the density of the primes,...The present paper gives the proof of the set of primes as continuum and evaluates the analytical formula for the integral of the inverse of the primes over the distance. First it starts with the density of the primes, shortly recapitulates the prime-number-formula and the complete-prime-number-formula, the proof of the set of primes as continuum. The theoretical evaluation is followed in annexes by numerical evaluation of the theoretical results and of different constants, which represent inherent properties of the set of primes.展开更多
This paper does not claim to prove the Goldbach conjecture, but it does provide a new way of proof (LiKe sequence);And in detailed introduces the proof process of this method: by indirect transformation, Goldbach conj...This paper does not claim to prove the Goldbach conjecture, but it does provide a new way of proof (LiKe sequence);And in detailed introduces the proof process of this method: by indirect transformation, Goldbach conjecture is transformed to prove that, for any odd prime sequence (3, 5, 7, <span style="font-size:12px;white-space:nowrap;">…</span>, <em>P<sub>n</sub></em>), there must have no LiKe sequence when the terms must be less than 3 <span style="font-size:12px;white-space:nowrap;">×</span> <em>P<sub>n</sub></em>. This method only studies prime numbers and corresponding composite numbers, replaced the relationship between even numbers and indeterminate prime numbers. In order to illustrate the importance of the idea of transforming the addition problem into the multiplication problem, we take the twin prime conjecture as an example and know there must exist twin primes in the interval [3<em>P<sub>n</sub></em>, <span><em>P</em></span><sup>2</sup><sub style="margin-left:-8px;"><em>n</em></sub>]. This idea is very important for the study of Goldbach conjecture and twin prime conjecture. It’s worth further study.展开更多
In this paper, we give an explicit numerical upper bound for the moduli of arithmetic progressions, in which the ternary Goldbach problem is solvable. Our result implies a quantitative upper bound for the Linnik const...In this paper, we give an explicit numerical upper bound for the moduli of arithmetic progressions, in which the ternary Goldbach problem is solvable. Our result implies a quantitative upper bound for the Linnik constant.展开更多
If Goldbach’s conjecture is true, then for each prime number p there is at least one pair of primes symmetric with respect to p and whose sum is 2p. In the multiplicative number theory, covering the positive integers...If Goldbach’s conjecture is true, then for each prime number p there is at least one pair of primes symmetric with respect to p and whose sum is 2p. In the multiplicative number theory, covering the positive integers with primes, during the prime factorization, may be viewed as being the outcome of a parallel system which functions properly if and only if Euler’s formula of the product of the reciprocals of the primes is true. An exact formula for the number of primes less than or equal to an arbitrary bound is given. This formula may be implemented using Wolfram’s computer package Mathematica.展开更多
The paper resolves the great debate of the 20th century between the three philosophies of mathematics-logicism, intuitionism and formalism—founded by Bertrand Russell and A. N. Whitehead, L. E. J. Brouwer and David H...The paper resolves the great debate of the 20th century between the three philosophies of mathematics-logicism, intuitionism and formalism—founded by Bertrand Russell and A. N. Whitehead, L. E. J. Brouwer and David Hilbert, respectively. The issue: which one provides firm foundations for mathematics? None of them won the debate. We make a critique of each, consolidate their contributions, rectify their weakness and add our own to resolve the debate. The resolution forms the new foundations of mathematics. Then we apply the new foundations to assess the status of Hilbert’s 23 problems most of which in foundations and find out which ones have been solved, which ones have flawed solutions that we rectify and which ones are open problems. Problem 6 of Hilbert’s problems—Can physics be axiomatized?—is answered yes in E. E. Escultura, Nonlinear Analysis, A-Series: 69(2008), which provides the solution, namely, the grand unified theory (GUT). We also point to the resolution of the 379-year-old Fermat’s conjecture (popularly known as Fermat’s last theorem) in E. E. Escultura, Exact Solutions of Fermat’s Equations (Definitive Resolution of Fermat’s Last Theorem), Nonlinear Studies, 5(2), (1998). Likewise, the proof of the 274-year-old Goldbach’s conjecture is in E. E. Escultura, The New Mathematics and Physics, Applied Mathematics and Computation, 138(1), 2003.展开更多
The union of the straight and—of the over a point of reflection—reflected union of the series of the arithmetic progression of primes results the double density of occupation of integer positions by multiples of the...The union of the straight and—of the over a point of reflection—reflected union of the series of the arithmetic progression of primes results the double density of occupation of integer positions by multiples of the primes. The remaining free positions represent diads of equidistant primes to the point of reflection: in case the point of reflection is an even number, they satisfy Goldbach’s conjecture. Further, it allows to prove, that the number of twin primes is unlimited. The number of all greater gaps as two between primes has well defined lower limit functions as well: it is evaluated with the local density of diads, multiplied with the total of the density of no-primes of all positions over the distance between the components of the diads (the size of the gaps). The infinity of these lower limit functions proves the infinity of the number of gaps of any size between primes. The connection of the infinite number of diads to the infinity of the number of gaps of any size is the aim of the paper.展开更多
Under the Generalized Riemann Hypothesis, it is proved that for any integer \%k≥770\% there is \%N\-k>0\% depending on \%k\% only such that every even integer ≥\%N\-k\% is a sum of two odd prime numbers and \%k\%...Under the Generalized Riemann Hypothesis, it is proved that for any integer \%k≥770\% there is \%N\-k>0\% depending on \%k\% only such that every even integer ≥\%N\-k\% is a sum of two odd prime numbers and \%k\% powers of 2.展开更多
It is proved that for almost all sufficiently large even integers n, the prime variable equation n = p1 + p2, p1 ∈ Pγ is solvable, with 13/15 〈γ≤ 1, where Pγ = {p |p = [m^1/γ], for integer m and prime p} is t...It is proved that for almost all sufficiently large even integers n, the prime variable equation n = p1 + p2, p1 ∈ Pγ is solvable, with 13/15 〈γ≤ 1, where Pγ = {p |p = [m^1/γ], for integer m and prime p} is the set of the Piatetski-Shapiro primes.展开更多
The union of the straight and over the point of reflection—reflected series of the arithmetic progression of primes results in the double density of occupation of integer positions. It is shown that the number of fre...The union of the straight and over the point of reflection—reflected series of the arithmetic progression of primes results in the double density of occupation of integer positions. It is shown that the number of free positions left by the double density of occupation has a lower limit function, which is growing to infinity. The free positions represent equidistant primes to the point of reflection: in case the point of reflection is an even number, they satisfy Goldbach’s conjecture. The double density allows proving as well that at any distance from the origin large enough—the distance between primes is smaller, than the square root of the distance to the origin. Therefore, the series of primes represent a continuum and may be integrated. Furthermore, it allows proving that the largest gap between primes is growing to infinity with the distance and that the number of any two primes, with a given even number as the distance between them, is unlimited. Thus, the number of twin primes is unlimited as well.展开更多
Under the Generalized Riemann Hypothesis, it is proved that for any integer \%k≥770\% there is \%N\-k>0\% depending on \%k\% only such that every even integer ≥\%N\-k\% is a sum of two odd prime numbers and \%k\...Under the Generalized Riemann Hypothesis, it is proved that for any integer \%k≥770\% there is \%N\-k>0\% depending on \%k\% only such that every even integer ≥\%N\-k\% is a sum of two odd prime numbers and \%k\% powers of 2.展开更多
Suppose B is a sufficiently large positive constant, ε is a sufficiently small positive constant, N is a sufficiently large natural number, and A = N7/81+ε. It is proved that all even numbers in (N, N + A) with O(Al...Suppose B is a sufficiently large positive constant, ε is a sufficiently small positive constant, N is a sufficiently large natural number, and A = N7/81+ε. It is proved that all even numbers in (N, N + A) with O(Alog-BN) exceptions are Goldbach numbers.展开更多
The famous strongly binary Goldbach’s conjecture asserts that every even number 2n ≥ 8 can always be expressible as a sum of two distinct odd prime numbers. We use a new approach to dealing with this conjecture. Spe...The famous strongly binary Goldbach’s conjecture asserts that every even number 2n ≥ 8 can always be expressible as a sum of two distinct odd prime numbers. We use a new approach to dealing with this conjecture. Specifically, we apply the element order prime graphs of alternating groups of degrees 2n and 2n −1 to characterize this conjecture, and present its six group-theoretic versions;and further prove that this conjecture is true for p +1 and p −1 whenever p ≥ 11 is a prime number.展开更多
The oldest Goldbach’s Conjecture (“Every even positive integer strictly larger than 4 is the sum of two primes”) has remained unproven since 1742. The recent proof [1] connected Goldbach’s Conjecture with the fact...The oldest Goldbach’s Conjecture (“Every even positive integer strictly larger than 4 is the sum of two primes”) has remained unproven since 1742. The recent proof [1] connected Goldbach’s Conjecture with the fact that every positive composite integer n strictly larger than 3, is located at the middle of the distance between two primes. The present paper contains explicit additional and complementary details of the proof, insisting on the existence and the number of Goldbach’s representations of even positive integers as sums of pairs of primes.展开更多
Goldbach’s Conjecture (“Every even positive integer strictly larger than 4 is the sum of two primes”) has remained unproven since 1742. This paper contains the proof that every positive composite integer n strictly...Goldbach’s Conjecture (“Every even positive integer strictly larger than 4 is the sum of two primes”) has remained unproven since 1742. This paper contains the proof that every positive composite integer n strictly larger than 3, is located at the middle of the distance between two primes, which implicitly proves Goldbach’s Conjecture for 2n as well.展开更多
文摘Let 2m>2, m∈ℤ, be the given even number of the Strong Goldbach Conjecture Problem. Then, m can be called the median of the problem. So, all Goldbach partitions (p,q)exist a relationship, p=m−dand q=m+d, where p≤qand d is the distance from m to either p or q. Now we denote the finite feasible solutions of the problem as S(2m)={ (2,2m−2),(3,2m−3),⋅⋅⋅,(m,m) }. If we utilize the Eratosthenes sieve principle to efface those false objects from set S(2m)in pistages, where pi∈P, pi≤2m, then all optimal solutions should be found. The Strong Goldbach Conjecture is true since we proved that at least one optimal solution must exist to the problem. The Weak Goldbach Conjecture is true since it is a special case of the Strong Goldbach Conjecture. Therefore, the Goldbach Conjecture is true.
文摘This study introduces the representation of natural number sets as row vectors and pretends to offer a new perspective on the strong Goldbach conjecture. The natural numbers are restructured and expanded with the inclusion of the zero element as the source of a strong Goldbach conjecture reformulation. A prime Boolean vector is defined, pinpointing the positions of prime numbers within the odd number sequence. The natural unit primality is discussed in this context and transformed into a source of quantum-like indetermination. This approach allows for rephrasing the strong Goldbach conjecture, framed within a Boolean scalar product between the prime Boolean vector and its reverse. Throughout the discussion, other intriguing topics emerge and are thoroughly analyzed. A final description of two empirical algorithms is provided to prove the strong Goldbach conjecture.
文摘The present paper gives the proof of the set of primes as a continuum. It starts with the density of the primes, and shortly recapitulates the prime-number-formula and the complete-prime-number-formula. Reflecting the series of the primes over any prime gives the double density of occupation of integer positions by the union of the series of multiples of the primes. The remaining free positions render it possible to prove Goldbach’s conjecture and the set of primes as a continuum. The theoretical evaluation is followed in annexes by numerical evaluation, demonstrating the theoretical results. The numerical evaluation results in different constants and relations, which represent inherent properties of the set of primes.
文摘The present paper gives the proof of the set of primes as continuum and evaluates the analytical formula for the integral of the inverse of the primes over the distance. First it starts with the density of the primes, shortly recapitulates the prime-number-formula and the complete-prime-number-formula, the proof of the set of primes as continuum. The theoretical evaluation is followed in annexes by numerical evaluation of the theoretical results and of different constants, which represent inherent properties of the set of primes.
文摘This paper does not claim to prove the Goldbach conjecture, but it does provide a new way of proof (LiKe sequence);And in detailed introduces the proof process of this method: by indirect transformation, Goldbach conjecture is transformed to prove that, for any odd prime sequence (3, 5, 7, <span style="font-size:12px;white-space:nowrap;">…</span>, <em>P<sub>n</sub></em>), there must have no LiKe sequence when the terms must be less than 3 <span style="font-size:12px;white-space:nowrap;">×</span> <em>P<sub>n</sub></em>. This method only studies prime numbers and corresponding composite numbers, replaced the relationship between even numbers and indeterminate prime numbers. In order to illustrate the importance of the idea of transforming the addition problem into the multiplication problem, we take the twin prime conjecture as an example and know there must exist twin primes in the interval [3<em>P<sub>n</sub></em>, <span><em>P</em></span><sup>2</sup><sub style="margin-left:-8px;"><em>n</em></sub>]. This idea is very important for the study of Goldbach conjecture and twin prime conjecture. It’s worth further study.
基金Project supported partially by NNSF of China NSF of Henan Province
文摘In this paper, we give an explicit numerical upper bound for the moduli of arithmetic progressions, in which the ternary Goldbach problem is solvable. Our result implies a quantitative upper bound for the Linnik constant.
文摘If Goldbach’s conjecture is true, then for each prime number p there is at least one pair of primes symmetric with respect to p and whose sum is 2p. In the multiplicative number theory, covering the positive integers with primes, during the prime factorization, may be viewed as being the outcome of a parallel system which functions properly if and only if Euler’s formula of the product of the reciprocals of the primes is true. An exact formula for the number of primes less than or equal to an arbitrary bound is given. This formula may be implemented using Wolfram’s computer package Mathematica.
文摘The paper resolves the great debate of the 20th century between the three philosophies of mathematics-logicism, intuitionism and formalism—founded by Bertrand Russell and A. N. Whitehead, L. E. J. Brouwer and David Hilbert, respectively. The issue: which one provides firm foundations for mathematics? None of them won the debate. We make a critique of each, consolidate their contributions, rectify their weakness and add our own to resolve the debate. The resolution forms the new foundations of mathematics. Then we apply the new foundations to assess the status of Hilbert’s 23 problems most of which in foundations and find out which ones have been solved, which ones have flawed solutions that we rectify and which ones are open problems. Problem 6 of Hilbert’s problems—Can physics be axiomatized?—is answered yes in E. E. Escultura, Nonlinear Analysis, A-Series: 69(2008), which provides the solution, namely, the grand unified theory (GUT). We also point to the resolution of the 379-year-old Fermat’s conjecture (popularly known as Fermat’s last theorem) in E. E. Escultura, Exact Solutions of Fermat’s Equations (Definitive Resolution of Fermat’s Last Theorem), Nonlinear Studies, 5(2), (1998). Likewise, the proof of the 274-year-old Goldbach’s conjecture is in E. E. Escultura, The New Mathematics and Physics, Applied Mathematics and Computation, 138(1), 2003.
文摘The union of the straight and—of the over a point of reflection—reflected union of the series of the arithmetic progression of primes results the double density of occupation of integer positions by multiples of the primes. The remaining free positions represent diads of equidistant primes to the point of reflection: in case the point of reflection is an even number, they satisfy Goldbach’s conjecture. Further, it allows to prove, that the number of twin primes is unlimited. The number of all greater gaps as two between primes has well defined lower limit functions as well: it is evaluated with the local density of diads, multiplied with the total of the density of no-primes of all positions over the distance between the components of the diads (the size of the gaps). The infinity of these lower limit functions proves the infinity of the number of gaps of any size between primes. The connection of the infinite number of diads to the infinity of the number of gaps of any size is the aim of the paper.
文摘Under the Generalized Riemann Hypothesis, it is proved that for any integer \%k≥770\% there is \%N\-k>0\% depending on \%k\% only such that every even integer ≥\%N\-k\% is a sum of two odd prime numbers and \%k\% powers of 2.
基金Project supported by the Foundation of Shandong Provincial Education Department in China (No.03F06)the Grant for Doctoral Fellows in Shandong Finance Institute
文摘It is proved that for almost all sufficiently large even integers n, the prime variable equation n = p1 + p2, p1 ∈ Pγ is solvable, with 13/15 〈γ≤ 1, where Pγ = {p |p = [m^1/γ], for integer m and prime p} is the set of the Piatetski-Shapiro primes.
文摘The union of the straight and over the point of reflection—reflected series of the arithmetic progression of primes results in the double density of occupation of integer positions. It is shown that the number of free positions left by the double density of occupation has a lower limit function, which is growing to infinity. The free positions represent equidistant primes to the point of reflection: in case the point of reflection is an even number, they satisfy Goldbach’s conjecture. The double density allows proving as well that at any distance from the origin large enough—the distance between primes is smaller, than the square root of the distance to the origin. Therefore, the series of primes represent a continuum and may be integrated. Furthermore, it allows proving that the largest gap between primes is growing to infinity with the distance and that the number of any two primes, with a given even number as the distance between them, is unlimited. Thus, the number of twin primes is unlimited as well.
基金ProjectpartiallysupportedbyRGCResearchGrant (No .HKU 712 2 / 97P)andPost DoctoralFellowshipoftheUniversityofHongKong .
文摘Under the Generalized Riemann Hypothesis, it is proved that for any integer \%k≥770\% there is \%N\-k>0\% depending on \%k\% only such that every even integer ≥\%N\-k\% is a sum of two odd prime numbers and \%k\% powers of 2.
基金Project suppported by the National Natural Science Foundation of China.
文摘Suppose B is a sufficiently large positive constant, ε is a sufficiently small positive constant, N is a sufficiently large natural number, and A = N7/81+ε. It is proved that all even numbers in (N, N + A) with O(Alog-BN) exceptions are Goldbach numbers.
文摘The famous strongly binary Goldbach’s conjecture asserts that every even number 2n ≥ 8 can always be expressible as a sum of two distinct odd prime numbers. We use a new approach to dealing with this conjecture. Specifically, we apply the element order prime graphs of alternating groups of degrees 2n and 2n −1 to characterize this conjecture, and present its six group-theoretic versions;and further prove that this conjecture is true for p +1 and p −1 whenever p ≥ 11 is a prime number.
文摘The oldest Goldbach’s Conjecture (“Every even positive integer strictly larger than 4 is the sum of two primes”) has remained unproven since 1742. The recent proof [1] connected Goldbach’s Conjecture with the fact that every positive composite integer n strictly larger than 3, is located at the middle of the distance between two primes. The present paper contains explicit additional and complementary details of the proof, insisting on the existence and the number of Goldbach’s representations of even positive integers as sums of pairs of primes.
文摘Goldbach’s Conjecture (“Every even positive integer strictly larger than 4 is the sum of two primes”) has remained unproven since 1742. This paper contains the proof that every positive composite integer n strictly larger than 3, is located at the middle of the distance between two primes, which implicitly proves Goldbach’s Conjecture for 2n as well.