A protein conjugate of streptomycin (streptomycin-bovine serum albumin (BSA) conjugate) was prepared and used as immunogen to produce monoclonal antibodies (MAb). One hybridoma secreting anti-streptomycin MAb wa...A protein conjugate of streptomycin (streptomycin-bovine serum albumin (BSA) conjugate) was prepared and used as immunogen to produce monoclonal antibodies (MAb). One hybridoma secreting anti-streptomycin MAb was obtained and then used to produce MAb. The MAb named 13H5 showed the 50% maximal inhibitory concentra- tion (IC50) value of 4.65 ng/ml and the IC20value of 0.21 ng/ml in phosphate buffered saline (PBS). At optimum con- ditions, an indirect competitive enzyme-linked immunosorbent assay (ELISA) and a colloidal gold-based immuno- chromatographic assay (CGIA) were developed and applied to detect streptomycin residues in milk and swine urine samples. The developed ELISA showed that the minimum detection limit was 2.0 and 1.9 ng/ml for milk and swine urine samples, respectively, without obvious cross-reactivity to other tested antibiotics except dihydrostreptomycin which gave a 118.32% cross reaction value. Milk and swine urine samples spiked with streptomycin at 10, 50, 100 and 200 ng/rnl were analyzed by the established ELISA. The mean recovery of streptomycin was from 81.9% to 105.5% and from 84.3% to 92.2% for milk and swine urine, respectively. The optimized CGIA showed that the minimum de- tection limit was 20.0 ng/ml for milk and swine urine samples. The results of spiked analysis and specific analysis demonstrate that the CGIA could be applicable for screening milk and swine urine samples for the presence of streptomycin residues on-site. The established ELISA and CGIA allow the rapid, low-cost, and sensitive determination of streptomycin residues in food samples.展开更多
The activation of HCl by cationic Au in the presence of C2H2 is important for the construction of active Au sites and in acetylene hydrochlorination.Here,we report a strategy for activating HCl by the Au-based support...The activation of HCl by cationic Au in the presence of C2H2 is important for the construction of active Au sites and in acetylene hydrochlorination.Here,we report a strategy for activating HCl by the Au-based supported ionic liquid phase(Au–SILP)technology with the[N(CN)2^–]anion.This strategy enables HCl to accept electrons from[N(CN)2^–]anions in Au–[N(CN)2^–]complexes rather than from pure[Bmim][N(CN)2],leading to notable improvement in both the reaction path and the stability of the catalyst without changing the reaction triggered by acetylene adsorption.Furthermore,the induction period of the Au–SILP catalyst was shown to be absent in the reaction process due to the high Au(III)content in the Au(Ⅲ)/Au(Ⅰ)site and the high substrate diffusion rate in the ionic liquid layer.This work provides a facile method to improve the stability of Au-based catalysts for acetylene hydrochlorination.展开更多
Two rapid, sensitive and reliable immunoassay methods, namely competitive indirect enzyme-linked immunosorbent assay (CI-ELISA) and colloidal gold-based immunochromatographic assay (CGIA), were developed to detect ofl...Two rapid, sensitive and reliable immunoassay methods, namely competitive indirect enzyme-linked immunosorbent assay (CI-ELISA) and colloidal gold-based immunochromatographic assay (CGIA), were developed to detect ofloxacin (OFL). The linear range of the CI-ELISA was from 0.5 to 128 ng/mL with a limit of detection (LOD) of 0.35 ng/mL. Good recoveries were obtained in analyzing simulated swine urine samples. The CGIA could accurately estimate OFL at concentrations as low as 10 ng/mL in less than 10 min, and test results were read visually without any instrument.展开更多
The selective electrochemical conversion of glycerol into value-added products is a green and sustainable strategy for the biomass utilization.In this work,Au nanowires(Au-NW)modified with polyethyleneimine(PEI)molecu...The selective electrochemical conversion of glycerol into value-added products is a green and sustainable strategy for the biomass utilization.In this work,Au nanowires(Au-NW)modified with polyethyleneimine(PEI)molecule(Au-NW@PEI)is obtained by an up-bottom post-modification approach.Physical characterization,molecular dynamics simulation and density functional theory demonstrate that the loose-packed PEI monolayer firmly and uniformly distribute on the Au-NW surface due to the strong Au-N interaction.Electrochemical experiments and product analysis display that PEI modification significantly enhance the electro-activity of Au-NW for the glycerol electro-oxidation reaction(GEOR)due to the electronic effect.Meanwhile,the steric hindrance and electrostatic effect of PEI layer make the optimizing adsorption of intermediates possible.Therefore,the selectivity of C3 product glyceric acid over Au-NW@PEI is increased by nearly 20%.The work thus indicates that the rational design of metal-organic interface can effectively elevate the electro-activity and selectivity of Au nanostructures,which may have wide application in biomass development.展开更多
Rice stripe virus(RSV) causes dramatic losses in rice production worldwide. In this study, two monoclonal antibodies(MAbs) 16E6 and 11 C1 against RSV and a colloidal gold-based immunochromatographic strip were develop...Rice stripe virus(RSV) causes dramatic losses in rice production worldwide. In this study, two monoclonal antibodies(MAbs) 16E6 and 11 C1 against RSV and a colloidal gold-based immunochromatographic strip were developed for specific, sensitive, and rapid detection of RSV in rice plant and planthopper samples. The MAb 16E6 was conjugated with colloidal gold and the MAb 11C1 was coated on the test line of the nitrocellulose membrane of the test strip. The specificity of the test strip was confirmed by a positive reaction to RSV-infected rice plants and small brown planthopper(SBPH), and negative reactions to five other rice viruses, healthy rice plants, four other vectors of five rice viruses, and non-viruliferous SBPH. Sensitivity analyses showed that the test strip could detect the virus in RSV-infected rice plant tissue crude extracts diluted to 1:20 480(w/v, g/mL), and in individual viruliferous SBPH homogenate diluted to 1:2560(individual SPBH/μL). The validity of the developed strip was further confirmed by tests using field-collected rice and SBPH samples. This newly developed test strip is a low-cost, fast, and easy-to-use tool for on-site detection of RSV infection during field epidemiological studies and paddy field surveys, and thus can benefit decision-making for RSV management in the field.展开更多
Today colorectal cancer(CRC)is one of the leading causes of cancer death worldwide.This disease is poorly chemo-sensitive toward the existing medical treatments so that new and more effective therapeutic agents are ur...Today colorectal cancer(CRC)is one of the leading causes of cancer death worldwide.This disease is poorly chemo-sensitive toward the existing medical treatments so that new and more effective therapeutic agents are urgently needed and intensely sought.Platinum drugs,oxaliplatin in particular,were reported to produce some significant benefit in CRC treatment,triggering the general interest of medicinal chemists and oncologists for metal-based compounds as candidate anti-CRC drugs.Within this frame,gold compounds and,specifically,the established antiarthritic drug auranofin with its analogs,form a novel group of promising anticancer agents.Owing to its innovative mechanism of action and its favorable pharmacological profile,auranofin together with its derivatives are proposed here as novel experimental agents for CRC treatment,capable of overcoming resistance to platinum drugs.Some encouraging results in this direction have already been obtained.A few recent studies demonstrate that the action of auranofin may be further potentiated through the preparation of suitable pharmaceutical formulations capable of protecting the gold pharmacophore from unselective reactivity or through the design of highly synergic drug combinations.The perspectives of the research in this field are outlined.展开更多
Radionuclides have been widely used for multimodal imaging and radioisotope therapy of cancer.Various nanomaterials have been developed as excellent nanocarriers of radionuclides for the targeted delivery into tumors,...Radionuclides have been widely used for multimodal imaging and radioisotope therapy of cancer.Various nanomaterials have been developed as excellent nanocarriers of radionuclides for the targeted delivery into tumors,in order to minimize the unnecessary side effect and enhance the therapeutic efficacy of radiotherapy.Among those nanomaterials,gold nanomaterials with tunable morphologies,easy modification,good biological safety,and radiation sensitization capability are excellent candidates for cancer theranostics.Given the superior performance of gold-based nanomaterials in biomedicine,we summary the recent advance of radionuclide labeled/doped gold-based nanomaterials for cancer theranostics.In this review article,we will discuss the methods for labelling or doping radionuclides onto gold nanomaterials,their applications for nuclear imaging and Cerenkov luminescence(CL)imaging,as well as the radioisotope therapy of cancer,and finally the toxicity evaluation of radionuclide labeled/doped gold-based nanomaterials.We hope that our review article would provide guidance for non-experts to design the radiolabeled nanomaterials for cancer imaging guided therapy.展开更多
Red 2G(R2G),a cheap industrial colorant,cannot be added to food.An anti-R2G monoclonal antibody(mAb)was prepared by immunizing mice with the conjugate of R2G hapten and protein,which based on the 1-ethyl-3-(3-dimethyl...Red 2G(R2G),a cheap industrial colorant,cannot be added to food.An anti-R2G monoclonal antibody(mAb)was prepared by immunizing mice with the conjugate of R2G hapten and protein,which based on the 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide(EDC)method.Indirect competitive enzyme-linked immunosorbent assay(ic-ELISA)and colloidal gold-based immunochromatographic assay(CG-ICA)methods were used to determine R2G in fruit drinks,red wine,and yoghurts.A standard curve of the developed ic-ELISA showed that the IC50 of the anti-R2G mAb was 1.02 ng/mL,and limit of detection value(LOD)was 0.21 ng/mL.For the CG-ICA developed,the visual limit of detection values(vLOD)were 2 ng/mL and cut-off values of 100 ng/mL in samples.The results indicated that these two methods could be used to quickly detect R2G in fruit drinks,red wine,and yoghurts.展开更多
Photothermal therapy(PTT)has received a lot of attention as a promising strategy for eliminating tumors quickly.However,the unavoidable inflammatory response during the treatment might result in a high concentration o...Photothermal therapy(PTT)has received a lot of attention as a promising strategy for eliminating tumors quickly.However,the unavoidable inflammatory response during the treatment might result in a high concentration of M2-like tumor-associated macrophages(TAMs),increasing the risk of tumor recurrence and metastasis.To address this problem,gold-based nanocarriers(PGMP-small interfering RNA(siRNA)nanoparticles(NPs))containing STAT6siRNA,that inhibited M2-like TAM polarization,were designed and investigated for PTT and gene therapy of non-small cell lung cancer(NSCLC).In an NSCLC model,the nanocarriers demonstrated excellent siRNA delivery ability and a high gene transfection rate of up to 90%in macrophages,thus inhibiting the polarization of about 87%of M2-like TAMs and effectively suppressing the invasion and metastasis of NSCLC.Meanwhile,the unique gold nanosphere structure offered improved PTT and contrast-enhanced ultrasound imaging,thus contributing to the efficient elimination and real-time monitoring of the tumor tissues.These nanocarriers with combined gene and photothermal therapeutic capabilities improved the efficacy of single-modality treatment,and showed the potential to inhibit cancer cell recurrence and metastasis to ultimately cure NSCLC.展开更多
Brain cancer,also known as intracranial cancer,is one of the most invasive and fatal cancers affecting people of all ages.Despite the great advances in medical technology,improvements in transporting drugs into brain ...Brain cancer,also known as intracranial cancer,is one of the most invasive and fatal cancers affecting people of all ages.Despite the great advances in medical technology,improvements in transporting drugs into brain tissue have been limited by the challenge of crossing the blood-brain barrier(BBB).Fortunately,recent endeavors using gold-based nanomaterials(GBNs)have indicated the potential of these materials to cross the BBB.Therefore,GBNs might be an attractive therapeutic strategy against brain cancer.Herein,we aim to present a comprehensive summary of current understanding of the critical effects of the physicochemical properties and surface modifications of GBNs on BBB penetration for applications in brain cancer treatment.Furthermore,the most recent GBNs and their impressive performance in precise bioimaging and efficient inhibition of brain tumors are also summarized,with an emphasis on the mechanism of their effective BBB penetration.Finally,the challenges and future outlook in using GBNs for brain cancer treatment are discussed.We hope that this review will spark researchers'interest in constructing more powerful nanoplatforms for brain disease treatment.展开更多
In this paper, we propose and demonstrate an all-fiber passively Q-switched erbium doped fiber laser (EDFL) by using gold nanostars (GNSs) as a saturable absorber (SA) for the first time, to the best of our know...In this paper, we propose and demonstrate an all-fiber passively Q-switched erbium doped fiber laser (EDFL) by using gold nanostars (GNSs) as a saturable absorber (SA) for the first time, to the best of our knowledge. In comparison with other gold nanomorphologies, GNSs have multiple localized surface plasmon resonances, which means that they can be used to construct wideband ultrafast pulse lasers. By inserting the GNS SA into an EDFL cavity pumped by a 980 nm laser diode, a stable passively Q-switched laser at 1564.5 nm was achieved for a threshold pump power of 40 mW. By gradually increasing the pump power from 40 to 120 mW, the pulse duration decreases from 12.8 to 5.3 its and the repetition rate increases from 10 to 17 kHz. Our results indicate that the GNSs are a promising SA for constructing pulse lasers.展开更多
基金Project (No.2007C22047) supported by the Program of Science and Technology of Zhejiang Province,China
文摘A protein conjugate of streptomycin (streptomycin-bovine serum albumin (BSA) conjugate) was prepared and used as immunogen to produce monoclonal antibodies (MAb). One hybridoma secreting anti-streptomycin MAb was obtained and then used to produce MAb. The MAb named 13H5 showed the 50% maximal inhibitory concentra- tion (IC50) value of 4.65 ng/ml and the IC20value of 0.21 ng/ml in phosphate buffered saline (PBS). At optimum con- ditions, an indirect competitive enzyme-linked immunosorbent assay (ELISA) and a colloidal gold-based immuno- chromatographic assay (CGIA) were developed and applied to detect streptomycin residues in milk and swine urine samples. The developed ELISA showed that the minimum detection limit was 2.0 and 1.9 ng/ml for milk and swine urine samples, respectively, without obvious cross-reactivity to other tested antibiotics except dihydrostreptomycin which gave a 118.32% cross reaction value. Milk and swine urine samples spiked with streptomycin at 10, 50, 100 and 200 ng/rnl were analyzed by the established ELISA. The mean recovery of streptomycin was from 81.9% to 105.5% and from 84.3% to 92.2% for milk and swine urine, respectively. The optimized CGIA showed that the minimum de- tection limit was 20.0 ng/ml for milk and swine urine samples. The results of spiked analysis and specific analysis demonstrate that the CGIA could be applicable for screening milk and swine urine samples for the presence of streptomycin residues on-site. The established ELISA and CGIA allow the rapid, low-cost, and sensitive determination of streptomycin residues in food samples.
文摘The activation of HCl by cationic Au in the presence of C2H2 is important for the construction of active Au sites and in acetylene hydrochlorination.Here,we report a strategy for activating HCl by the Au-based supported ionic liquid phase(Au–SILP)technology with the[N(CN)2^–]anion.This strategy enables HCl to accept electrons from[N(CN)2^–]anions in Au–[N(CN)2^–]complexes rather than from pure[Bmim][N(CN)2],leading to notable improvement in both the reaction path and the stability of the catalyst without changing the reaction triggered by acetylene adsorption.Furthermore,the induction period of the Au–SILP catalyst was shown to be absent in the reaction process due to the high Au(III)content in the Au(Ⅲ)/Au(Ⅰ)site and the high substrate diffusion rate in the ionic liquid layer.This work provides a facile method to improve the stability of Au-based catalysts for acetylene hydrochlorination.
文摘Two rapid, sensitive and reliable immunoassay methods, namely competitive indirect enzyme-linked immunosorbent assay (CI-ELISA) and colloidal gold-based immunochromatographic assay (CGIA), were developed to detect ofloxacin (OFL). The linear range of the CI-ELISA was from 0.5 to 128 ng/mL with a limit of detection (LOD) of 0.35 ng/mL. Good recoveries were obtained in analyzing simulated swine urine samples. The CGIA could accurately estimate OFL at concentrations as low as 10 ng/mL in less than 10 min, and test results were read visually without any instrument.
基金sponsored by National Natural Science Foundation of China(No.22202130)China Postdoctoral Science Foundation(No.2022M710088)+3 种基金Science and Technology Innovation Team of Shaanxi Province(Nos.2023-CX-TD-27 and 2022TD-35)Fundamental Research Funds for the Central Universities(Nos.GK202202001 and GK202101005)Open Funds of the State Key Laboratory of Electroanalytical Chemistry(No.SKLEAC202207)the 111 Project(No.B14041)。
文摘The selective electrochemical conversion of glycerol into value-added products is a green and sustainable strategy for the biomass utilization.In this work,Au nanowires(Au-NW)modified with polyethyleneimine(PEI)molecule(Au-NW@PEI)is obtained by an up-bottom post-modification approach.Physical characterization,molecular dynamics simulation and density functional theory demonstrate that the loose-packed PEI monolayer firmly and uniformly distribute on the Au-NW surface due to the strong Au-N interaction.Electrochemical experiments and product analysis display that PEI modification significantly enhance the electro-activity of Au-NW for the glycerol electro-oxidation reaction(GEOR)due to the electronic effect.Meanwhile,the steric hindrance and electrostatic effect of PEI layer make the optimizing adsorption of intermediates possible.Therefore,the selectivity of C3 product glyceric acid over Au-NW@PEI is increased by nearly 20%.The work thus indicates that the rational design of metal-organic interface can effectively elevate the electro-activity and selectivity of Au nanostructures,which may have wide application in biomass development.
基金Project supported by the National Key Research and Development Program of China(No.2016YFD0300706)the Ministry of Agriculture of China(No.2016ZX08009003-001)+1 种基金the National Natural Science Foundation of China(No.31571976)the Earmarked Fund for China Agriculture Research System(No.nycytux-001)
文摘Rice stripe virus(RSV) causes dramatic losses in rice production worldwide. In this study, two monoclonal antibodies(MAbs) 16E6 and 11 C1 against RSV and a colloidal gold-based immunochromatographic strip were developed for specific, sensitive, and rapid detection of RSV in rice plant and planthopper samples. The MAb 16E6 was conjugated with colloidal gold and the MAb 11C1 was coated on the test line of the nitrocellulose membrane of the test strip. The specificity of the test strip was confirmed by a positive reaction to RSV-infected rice plants and small brown planthopper(SBPH), and negative reactions to five other rice viruses, healthy rice plants, four other vectors of five rice viruses, and non-viruliferous SBPH. Sensitivity analyses showed that the test strip could detect the virus in RSV-infected rice plant tissue crude extracts diluted to 1:20 480(w/v, g/mL), and in individual viruliferous SBPH homogenate diluted to 1:2560(individual SPBH/μL). The validity of the developed strip was further confirmed by tests using field-collected rice and SBPH samples. This newly developed test strip is a low-cost, fast, and easy-to-use tool for on-site detection of RSV infection during field epidemiological studies and paddy field surveys, and thus can benefit decision-making for RSV management in the field.
基金funding the project“Advanced mass spectrometry tools for cancer research:novel applications in proteomics,metabolomics and nanomedicine”(Multi-user Equipment Program 2016,Ref.code 19650)the Beneficentia Stiftung,Vaduz(BEN2019/48 and University of Pisa(Rating Ateneo 2019-2020)for the financial support+1 种基金supported by the University of Pisa under the“PRA-Progetti di Ricerca di Ateneo”Institutional Research Grants-Project no.PRA_2020_58“Agenti innovativi e nanosistemi per target molecolari nell’ambito dell’oncologia di precisione”to Marzo Tthe financial support(two-year fellowship for Italy“Marcello e Rosina Soru”-Project Code:23852).
文摘Today colorectal cancer(CRC)is one of the leading causes of cancer death worldwide.This disease is poorly chemo-sensitive toward the existing medical treatments so that new and more effective therapeutic agents are urgently needed and intensely sought.Platinum drugs,oxaliplatin in particular,were reported to produce some significant benefit in CRC treatment,triggering the general interest of medicinal chemists and oncologists for metal-based compounds as candidate anti-CRC drugs.Within this frame,gold compounds and,specifically,the established antiarthritic drug auranofin with its analogs,form a novel group of promising anticancer agents.Owing to its innovative mechanism of action and its favorable pharmacological profile,auranofin together with its derivatives are proposed here as novel experimental agents for CRC treatment,capable of overcoming resistance to platinum drugs.Some encouraging results in this direction have already been obtained.A few recent studies demonstrate that the action of auranofin may be further potentiated through the preparation of suitable pharmaceutical formulations capable of protecting the gold pharmacophore from unselective reactivity or through the design of highly synergic drug combinations.The perspectives of the research in this field are outlined.
基金This work was partially supported by National Natural Science Foundation of China(31822022,U1932208,31900986)a Jiangsu Natural Science Fund for Outstanding Youth Science Foundation(BK20180094)+1 种基金the Foundation of Jiangsu Provincial Medical Innovation Team(CXTDA2017042)a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD).
文摘Radionuclides have been widely used for multimodal imaging and radioisotope therapy of cancer.Various nanomaterials have been developed as excellent nanocarriers of radionuclides for the targeted delivery into tumors,in order to minimize the unnecessary side effect and enhance the therapeutic efficacy of radiotherapy.Among those nanomaterials,gold nanomaterials with tunable morphologies,easy modification,good biological safety,and radiation sensitization capability are excellent candidates for cancer theranostics.Given the superior performance of gold-based nanomaterials in biomedicine,we summary the recent advance of radionuclide labeled/doped gold-based nanomaterials for cancer theranostics.In this review article,we will discuss the methods for labelling or doping radionuclides onto gold nanomaterials,their applications for nuclear imaging and Cerenkov luminescence(CL)imaging,as well as the radioisotope therapy of cancer,and finally the toxicity evaluation of radionuclide labeled/doped gold-based nanomaterials.We hope that our review article would provide guidance for non-experts to design the radiolabeled nanomaterials for cancer imaging guided therapy.
基金This work was funded by the National Key R&D Program(2019YFC1604602)grants from Science and Technology Program of Jiangsu Market Supervision and Administration Bureau(KJ21125093)This work was also supported by the Fundamental Research Funds for the Central Universities(JUSRP622012).
文摘Red 2G(R2G),a cheap industrial colorant,cannot be added to food.An anti-R2G monoclonal antibody(mAb)was prepared by immunizing mice with the conjugate of R2G hapten and protein,which based on the 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide(EDC)method.Indirect competitive enzyme-linked immunosorbent assay(ic-ELISA)and colloidal gold-based immunochromatographic assay(CG-ICA)methods were used to determine R2G in fruit drinks,red wine,and yoghurts.A standard curve of the developed ic-ELISA showed that the IC50 of the anti-R2G mAb was 1.02 ng/mL,and limit of detection value(LOD)was 0.21 ng/mL.For the CG-ICA developed,the visual limit of detection values(vLOD)were 2 ng/mL and cut-off values of 100 ng/mL in samples.The results indicated that these two methods could be used to quickly detect R2G in fruit drinks,red wine,and yoghurts.
基金This work was supported by the Natural Science Foundation of China(Nos.81873898,81960316,81871411,32011530115,and 32025021)the Science&Technology Bureau of Ningbo City(Nos.2020Z094 and 2021Z072)+1 种基金the Excellent Member of Youth Innovation Promotion Association Foundation of CAS(No.Y2021079)the Ningbo 3315 Innovative Teams Program,China(No.2019A-14-C).
文摘Photothermal therapy(PTT)has received a lot of attention as a promising strategy for eliminating tumors quickly.However,the unavoidable inflammatory response during the treatment might result in a high concentration of M2-like tumor-associated macrophages(TAMs),increasing the risk of tumor recurrence and metastasis.To address this problem,gold-based nanocarriers(PGMP-small interfering RNA(siRNA)nanoparticles(NPs))containing STAT6siRNA,that inhibited M2-like TAM polarization,were designed and investigated for PTT and gene therapy of non-small cell lung cancer(NSCLC).In an NSCLC model,the nanocarriers demonstrated excellent siRNA delivery ability and a high gene transfection rate of up to 90%in macrophages,thus inhibiting the polarization of about 87%of M2-like TAMs and effectively suppressing the invasion and metastasis of NSCLC.Meanwhile,the unique gold nanosphere structure offered improved PTT and contrast-enhanced ultrasound imaging,thus contributing to the efficient elimination and real-time monitoring of the tumor tissues.These nanocarriers with combined gene and photothermal therapeutic capabilities improved the efficacy of single-modality treatment,and showed the potential to inhibit cancer cell recurrence and metastasis to ultimately cure NSCLC.
基金supported by the National Natural Science Foundation of China(NSFC)(Grant Nos.82001959 and 31630027)NSFC-German Research Foundation(DFG)project(Grant No.31761133013)+6 种基金appreciate support from the“Ten Thousand Elite Plan”(Grant No.Y9E21Z11)CAS International Collaboration Plan(Grant No.E0632911ZX)the National Key Research&Development Program of China(Grant No.2018YFE0117800)the Key Laboratory of Biomedical Effects of Nanomaterials and NanosafetyCAS(Grant No.NSKF202003)Fujian Provincial Key Laboratory of Innovative Drug Target Research(Grant No.FJ-YW-2021KF04)financial support from the Nanqiang Outstanding Young Talents Program from Xiamen University。
文摘Brain cancer,also known as intracranial cancer,is one of the most invasive and fatal cancers affecting people of all ages.Despite the great advances in medical technology,improvements in transporting drugs into brain tissue have been limited by the challenge of crossing the blood-brain barrier(BBB).Fortunately,recent endeavors using gold-based nanomaterials(GBNs)have indicated the potential of these materials to cross the BBB.Therefore,GBNs might be an attractive therapeutic strategy against brain cancer.Herein,we aim to present a comprehensive summary of current understanding of the critical effects of the physicochemical properties and surface modifications of GBNs on BBB penetration for applications in brain cancer treatment.Furthermore,the most recent GBNs and their impressive performance in precise bioimaging and efficient inhibition of brain tumors are also summarized,with an emphasis on the mechanism of their effective BBB penetration.Finally,the challenges and future outlook in using GBNs for brain cancer treatment are discussed.We hope that this review will spark researchers'interest in constructing more powerful nanoplatforms for brain disease treatment.
基金National Natural Science Foundation of China(NSFC)(11474132,61378004,61527823,61605058,61605219)Natural Science Foundation of Jilin Province(20160520085JH)+3 种基金Key Technology Research and Development Project of Jilin Province(20180201120GX)Major Science and Technology Tendering Project of Jilin Province(20170203012GX)Joint Foundation from Equipment Pre-research and Ministry of Education(6141A02022413)Outstanding Young Talent Fund Project of Jilin Province(20180520188JH)
文摘In this paper, we propose and demonstrate an all-fiber passively Q-switched erbium doped fiber laser (EDFL) by using gold nanostars (GNSs) as a saturable absorber (SA) for the first time, to the best of our knowledge. In comparison with other gold nanomorphologies, GNSs have multiple localized surface plasmon resonances, which means that they can be used to construct wideband ultrafast pulse lasers. By inserting the GNS SA into an EDFL cavity pumped by a 980 nm laser diode, a stable passively Q-switched laser at 1564.5 nm was achieved for a threshold pump power of 40 mW. By gradually increasing the pump power from 40 to 120 mW, the pulse duration decreases from 12.8 to 5.3 its and the repetition rate increases from 10 to 17 kHz. Our results indicate that the GNSs are a promising SA for constructing pulse lasers.