Gold colloids were prepared by citrate-induced reduction of hydrogen tetrachloroaurale, and gold nanoparticles were electrostatically self-assembled with poly( diallyldimethylammonium chloride) into multi-layer thin f...Gold colloids were prepared by citrate-induced reduction of hydrogen tetrachloroaurale, and gold nanoparticles were electrostatically self-assembled with poly( diallyldimethylammonium chloride) into multi-layer thin films on si/icon and quartz substrates. The paniculate thin films were characterized by UV-vis spea-troscopy, surface, enhanced Raman scattering, atomic force microscopy and resistivity measurements. Due to the interparticle coupling between individual gold particles, an obvious collective particle plasmon resonance was ob-served on UV-vis spectra , and the particulate thin films exhibited a strong SERS effect. For multilayer thin films with a high particle coverage on substrates , resistivity of the order of 10-4 Ω·cm was yielded.展开更多
A facile approach to prepare a thin film vapor sensor is demonstrated through droplet interracial reaction on an IDA microelectrode. Scanning electron microscopy, atomic force microscopy and transmission electron micr...A facile approach to prepare a thin film vapor sensor is demonstrated through droplet interracial reaction on an IDA microelectrode. Scanning electron microscopy, atomic force microscopy and transmission electron microscopy analyses show that the film of the vapor sensor is composed of self-assembled gold nanocrystals in an average diameter of about 4.3 nm. The as-prepared sensor was examined by potential step method and impedance measurement, which exhibited significant △R/Ri responses and excellent cycle performance to the volatile organic compound (VOC) vapors of acetone, methanol, styrene, benzene, toluene and ethanol. The selectivity to the VOCs with benzene ring or organic solvents suggests that the sensor is probably in line with the swelling and dielectric sensing mechanisms.展开更多
Gold colloid was prepared by chemical reduction of hydrogen tetrachloroaurate, polyelectrolyte/gold nanoparticle/silica nanoparticie composite films were fabricated via an electrostatic self-assembly multilayer method...Gold colloid was prepared by chemical reduction of hydrogen tetrachloroaurate, polyelectrolyte/gold nanoparticle/silica nanoparticie composite films were fabricated via an electrostatic self-assembly multilayer method, and composite films of gold nanoparticle dispersed in silica matrix were formed by heat-treating the polyelectrolyte/gold nanoparticle/silica nanoparticle composite films to eliminate the polyelectrolyte. The obtained composite films were investigated with UV-vis, TEM, AFM and XRD. The results show that the self-assembly multilayer method is a promising process to produce composite films of gold nanoparticle-dispersed in organic and/or inorganic matrixes.展开更多
基金This research was financially supported by China Scholar-ship Council and the Natural Science Foundation of Hubei Province (Project 2000J002)
文摘Gold colloids were prepared by citrate-induced reduction of hydrogen tetrachloroaurale, and gold nanoparticles were electrostatically self-assembled with poly( diallyldimethylammonium chloride) into multi-layer thin films on si/icon and quartz substrates. The paniculate thin films were characterized by UV-vis spea-troscopy, surface, enhanced Raman scattering, atomic force microscopy and resistivity measurements. Due to the interparticle coupling between individual gold particles, an obvious collective particle plasmon resonance was ob-served on UV-vis spectra , and the particulate thin films exhibited a strong SERS effect. For multilayer thin films with a high particle coverage on substrates , resistivity of the order of 10-4 Ω·cm was yielded.
基金supported by the National Natural Science Foundation of China(Grant No.21163004)the Guangxi Natural Science Foundation(Grant No.2010GXNSFC013006)the Scientific Research Foundation for Returned Scholars,Ministry of Education of China
文摘A facile approach to prepare a thin film vapor sensor is demonstrated through droplet interracial reaction on an IDA microelectrode. Scanning electron microscopy, atomic force microscopy and transmission electron microscopy analyses show that the film of the vapor sensor is composed of self-assembled gold nanocrystals in an average diameter of about 4.3 nm. The as-prepared sensor was examined by potential step method and impedance measurement, which exhibited significant △R/Ri responses and excellent cycle performance to the volatile organic compound (VOC) vapors of acetone, methanol, styrene, benzene, toluene and ethanol. The selectivity to the VOCs with benzene ring or organic solvents suggests that the sensor is probably in line with the swelling and dielectric sensing mechanisms.
基金This work was supported by the Natural Science Foundation of Hubei Province(Project No.2000J002)
文摘Gold colloid was prepared by chemical reduction of hydrogen tetrachloroaurate, polyelectrolyte/gold nanoparticle/silica nanoparticie composite films were fabricated via an electrostatic self-assembly multilayer method, and composite films of gold nanoparticle dispersed in silica matrix were formed by heat-treating the polyelectrolyte/gold nanoparticle/silica nanoparticle composite films to eliminate the polyelectrolyte. The obtained composite films were investigated with UV-vis, TEM, AFM and XRD. The results show that the self-assembly multilayer method is a promising process to produce composite films of gold nanoparticle-dispersed in organic and/or inorganic matrixes.