Hepatocellular carcinoma(HCC)is an aggressive human cancer with increasing incidence worldwide.Multiple efforts have been made to explore pharmaceutical therapies to treat HCC,such as targeted tyrosine kinase inhibito...Hepatocellular carcinoma(HCC)is an aggressive human cancer with increasing incidence worldwide.Multiple efforts have been made to explore pharmaceutical therapies to treat HCC,such as targeted tyrosine kinase inhibitors,immune based therapies and combination of chemotherapy.However,limitations exist in current strategies including chemoresistance for instance.Tumor initiation and progression is driven by reprogramming of metabolism,in particular during HCC development.Recently,metabolic associated fatty liver disease(MAFLD),a reappraisal of new nomenclature for nonalcoholic fatty liver disease(NAFLD),indicates growing appreciation of metabolism in the pathogenesis of liver disease,including HCC,thereby suggesting new strategies by targeting abnormal metabolism for HCC treatment.In this review,we introduce directions by highlighting the metabolic targets in glucose,fatty acid,amino acid and glutamine metabolism,which are suitable for HCC pharmaceutical intervention.We also summarize and discuss current pharmaceutical agents and studies targeting deregulated metabolism during HCC treatment.Furthermore,opportunities and challenges in the discovery and development of HCC therapy targeting metabolism are discussed.展开更多
Lobetyolin(LBT)is a polyacetylene glycoside found in diverse medicinal plants but mainly isolated from the roots of Codo-nopsis pilosula,known as Radix Codonopsis or Dangshen.Twelve traditional Chinese medicinal prepa...Lobetyolin(LBT)is a polyacetylene glycoside found in diverse medicinal plants but mainly isolated from the roots of Codo-nopsis pilosula,known as Radix Codonopsis or Dangshen.Twelve traditional Chinese medicinal preparations containing Radix Codonopsis were identified;they are generally used to tonify spleen and lung Qi and occasionally to treat cancer.Here we have reviewed the anticancer properties of Codonopsis extracts,LBT and structural analogs.Lobetyolin and lobetyolinin are the mono-and bis-glucosylated forms of the polyacetylenic compound lobetyol.Lobetyol and LBT have shown activi-ties against several types of cancer(notably gastric cancer)and we examined the molecular basis of their activity.A down-regulation of glutamine metabolism by LBT has been evidenced,contributing to drug-induced apoptosis and tumor growth inhibition.LBT markedly reduces both mRNA and protein expression of the amino acid transporter Alanine-Serine-Cysteine Transporter 2(ASCT2).Other potential targets are proposed here,based on the structural analogy with other anticancer compounds.LBT and related polyacetylene glycosides should be further considered as potential anticancer agents,but more work is needed to evaluate their efficacy,toxicity,and risk-benefit ratio.展开更多
Background: Glutamine and glutamate are known to play important roles in cancer biology. However, no detailed information is available in terms of their levels of involvement in various biological processes across dif...Background: Glutamine and glutamate are known to play important roles in cancer biology. However, no detailed information is available in terms of their levels of involvement in various biological processes across different cancer types, whereas such knowledge could be critical for understanding the distinct characteristics of different cancer types. Our computational study aimed to examine the functional roles of glutamine and glutamate across different cancer types.Methods: We conducted a comparative analysis of gene expression data of cancer tissues versus normal control tissues of 11 cancer types to understand glutamine and glutamate metabolisms in cancer. Specifically, we developed a linear regression model to assess differential contributions by glutamine and/or glutamate to each of seven biological processes in cancer versus control tissues.Results: While our computational predictions were consistent with some of the previous observations, multiple novel predictions were made:(1) glutamine is generally not involved in purine synthesis in cancer except for breast cancer, and is similarly not involved in pyridine synthesis except for kidney cancer;(2) glutamine is generally not involved in ATP production in cancer;(3) glutamine's contribution to nucleotide synthesis is minimal if any in cancer;(4) glutamine is not involved in asparagine synthesis in cancer except for bladder and lung cancers; and(5) glutamate does not contribute to serine synthesis except for bladder cancer.Conclusions: We comprehensively predicted the roles of glutamine and glutamate metabolisms in selected metabolic pathways in cancer tissues versus control tissues, which may lead to novel approaches to therapeutic development targeted at glutamine and/or glutamate metabolism. However, our predictions need further functional validation.展开更多
基金supported by the National Natural Science Foundation of China(No.82070883)Scientific Research Foundation for high-level faculty,China Pharmaceutical University(Nanjing,China)。
文摘Hepatocellular carcinoma(HCC)is an aggressive human cancer with increasing incidence worldwide.Multiple efforts have been made to explore pharmaceutical therapies to treat HCC,such as targeted tyrosine kinase inhibitors,immune based therapies and combination of chemotherapy.However,limitations exist in current strategies including chemoresistance for instance.Tumor initiation and progression is driven by reprogramming of metabolism,in particular during HCC development.Recently,metabolic associated fatty liver disease(MAFLD),a reappraisal of new nomenclature for nonalcoholic fatty liver disease(NAFLD),indicates growing appreciation of metabolism in the pathogenesis of liver disease,including HCC,thereby suggesting new strategies by targeting abnormal metabolism for HCC treatment.In this review,we introduce directions by highlighting the metabolic targets in glucose,fatty acid,amino acid and glutamine metabolism,which are suitable for HCC pharmaceutical intervention.We also summarize and discuss current pharmaceutical agents and studies targeting deregulated metabolism during HCC treatment.Furthermore,opportunities and challenges in the discovery and development of HCC therapy targeting metabolism are discussed.
文摘Lobetyolin(LBT)is a polyacetylene glycoside found in diverse medicinal plants but mainly isolated from the roots of Codo-nopsis pilosula,known as Radix Codonopsis or Dangshen.Twelve traditional Chinese medicinal preparations containing Radix Codonopsis were identified;they are generally used to tonify spleen and lung Qi and occasionally to treat cancer.Here we have reviewed the anticancer properties of Codonopsis extracts,LBT and structural analogs.Lobetyolin and lobetyolinin are the mono-and bis-glucosylated forms of the polyacetylenic compound lobetyol.Lobetyol and LBT have shown activi-ties against several types of cancer(notably gastric cancer)and we examined the molecular basis of their activity.A down-regulation of glutamine metabolism by LBT has been evidenced,contributing to drug-induced apoptosis and tumor growth inhibition.LBT markedly reduces both mRNA and protein expression of the amino acid transporter Alanine-Serine-Cysteine Transporter 2(ASCT2).Other potential targets are proposed here,based on the structural analogy with other anticancer compounds.LBT and related polyacetylene glycosides should be further considered as potential anticancer agents,but more work is needed to evaluate their efficacy,toxicity,and risk-benefit ratio.
基金supported by Georgia Research Alliance and the National Natural Science Foundation of China(Grant Nos.81320108025,61402194,61572227)the Science-Technology Development Project from Jilin Province(Nos.20160101259JC,20160204022GX,20170520063JH)
文摘Background: Glutamine and glutamate are known to play important roles in cancer biology. However, no detailed information is available in terms of their levels of involvement in various biological processes across different cancer types, whereas such knowledge could be critical for understanding the distinct characteristics of different cancer types. Our computational study aimed to examine the functional roles of glutamine and glutamate across different cancer types.Methods: We conducted a comparative analysis of gene expression data of cancer tissues versus normal control tissues of 11 cancer types to understand glutamine and glutamate metabolisms in cancer. Specifically, we developed a linear regression model to assess differential contributions by glutamine and/or glutamate to each of seven biological processes in cancer versus control tissues.Results: While our computational predictions were consistent with some of the previous observations, multiple novel predictions were made:(1) glutamine is generally not involved in purine synthesis in cancer except for breast cancer, and is similarly not involved in pyridine synthesis except for kidney cancer;(2) glutamine is generally not involved in ATP production in cancer;(3) glutamine's contribution to nucleotide synthesis is minimal if any in cancer;(4) glutamine is not involved in asparagine synthesis in cancer except for bladder and lung cancers; and(5) glutamate does not contribute to serine synthesis except for bladder cancer.Conclusions: We comprehensively predicted the roles of glutamine and glutamate metabolisms in selected metabolic pathways in cancer tissues versus control tissues, which may lead to novel approaches to therapeutic development targeted at glutamine and/or glutamate metabolism. However, our predictions need further functional validation.