Precise interferometric synthetic aperture radar (InSAR) is a new intelligent photogrammetric technology that uses automatic imaging and processing means. Precise InSAR has become the most efficient satellite surveyin...Precise interferometric synthetic aperture radar (InSAR) is a new intelligent photogrammetric technology that uses automatic imaging and processing means. Precise InSAR has become the most efficient satellite surveying and mapping (SASM) method that uses the interferometric phase to create a global digital elevation model (DEM) with high precision. In this paper, we propose the application of systematic InSAR technologies to SASM. Three key technologies are proposed: calibration technology, data processing technology and post-processing technology. First, we need to calibrate the geometric and interferometric parameters including the azimuth time delay, range time delay, and atmospheric delay, as well as baseline errors. Second, we use the calibrated parameters to create a precise DEM. One of the important procedures in data processing is the determination of phase ambiguities. Finally, we improve the DEM quality through the joint use of the block adjustment method, long and short baseline combination method and descending and ascending data merge method. We use 6 sets of TanDEM-X data covering Shanxi to conduct the experiment. The root mean square error of the final DEM is 5.07 m in the mountainous regions. In addition, the low coherence area is 0.8 km 2. The result meets the China domestic SASM accuracy standard at both the 1∶50 000 and 1∶25 000 measurement scales.展开更多
Multi-sensor vision system plays an important role in the 3D measurement of large objects.However,due to the widely distribution of sensors,the problem of lacking common fields of view(FOV) arises frequently,which m...Multi-sensor vision system plays an important role in the 3D measurement of large objects.However,due to the widely distribution of sensors,the problem of lacking common fields of view(FOV) arises frequently,which makes the global calibration of the vision system quite difficult.The primary existing solution relies on large-scale surveying equipments,which is ponderous and inconvenient for field calibrations.In this paper,a global calibration method of multi-sensor vision system is proposed and investigated.The proposed method utilizes pairs of skew laser lines,which are generated by a group of laser pointers,as the calibration objects.Each pair of skew laser lines provides a unique coordinate system in space which can be reconstructed in certain vision sensor's coordinates by using a planar pattern.Then the geometries of sensors are computed under rigid transformation constrains by taking coordinates of each skew lines pair as the intermediary.The method is applied on both visual cameras with synthetic data and a real two-camera vision system;results show the validity and good performance.The prime contribution of this paper is taking skew laser lines as the global calibration objects,which makes the method simple and flexible.The method need no expensive equipments and can be used in large-scale calibration.展开更多
To make the problems of existing high requirements of calibration tools, complex global calibration process addressed for monocular multi-view visual measurement system during measurement, in the paper, a global calib...To make the problems of existing high requirements of calibration tools, complex global calibration process addressed for monocular multi-view visual measurement system during measurement, in the paper, a global calibration method is proposed for the geometric properties of rotational correlation motion and the absolute orientation of the field of view without over lap. Firstly, a dual-camera system is constructed for photographing and collecting the rotating image sequence of two flat targets rigidly connected by a long rod at different positions, and based on the known parameters, such as, target feature image, world coordinates, camera internal parameters and so on, then the global PnP optimization method is used to solve the rotation axis and the reference point at different positions;Then, the absolute orientation matrix is constructed based on the parameters of rotation axis, reference point and connecting rod length obtained by this method. In the end, the singular value decomposition method is used to find the optimal rotation matrix, and then get the translation matrix. It’s shown based on simulation and actual tests that in comparison with the existing methods, the maximum attitude and pose errors is 0.0083˚ and 0.3657 mm, respectively, which improves the accuracy by 27.8% and 24.4%, respectively. The calibration device in this paper is simple, and there are no parallel, vertical and coplanar requirements between multiple rotating positions. At the same time, in view of the calibration accuracy, the accuracy requirements of most application scenarios can be met.展开更多
文摘Precise interferometric synthetic aperture radar (InSAR) is a new intelligent photogrammetric technology that uses automatic imaging and processing means. Precise InSAR has become the most efficient satellite surveying and mapping (SASM) method that uses the interferometric phase to create a global digital elevation model (DEM) with high precision. In this paper, we propose the application of systematic InSAR technologies to SASM. Three key technologies are proposed: calibration technology, data processing technology and post-processing technology. First, we need to calibrate the geometric and interferometric parameters including the azimuth time delay, range time delay, and atmospheric delay, as well as baseline errors. Second, we use the calibrated parameters to create a precise DEM. One of the important procedures in data processing is the determination of phase ambiguities. Finally, we improve the DEM quality through the joint use of the block adjustment method, long and short baseline combination method and descending and ascending data merge method. We use 6 sets of TanDEM-X data covering Shanxi to conduct the experiment. The root mean square error of the final DEM is 5.07 m in the mountainous regions. In addition, the low coherence area is 0.8 km 2. The result meets the China domestic SASM accuracy standard at both the 1∶50 000 and 1∶25 000 measurement scales.
基金supported by National Natural Science Foundation of China (Grant No. 60804060)Research Fund for the Doctoral Program of Higher Education of China (Grant No. 200800061003)
文摘Multi-sensor vision system plays an important role in the 3D measurement of large objects.However,due to the widely distribution of sensors,the problem of lacking common fields of view(FOV) arises frequently,which makes the global calibration of the vision system quite difficult.The primary existing solution relies on large-scale surveying equipments,which is ponderous and inconvenient for field calibrations.In this paper,a global calibration method of multi-sensor vision system is proposed and investigated.The proposed method utilizes pairs of skew laser lines,which are generated by a group of laser pointers,as the calibration objects.Each pair of skew laser lines provides a unique coordinate system in space which can be reconstructed in certain vision sensor's coordinates by using a planar pattern.Then the geometries of sensors are computed under rigid transformation constrains by taking coordinates of each skew lines pair as the intermediary.The method is applied on both visual cameras with synthetic data and a real two-camera vision system;results show the validity and good performance.The prime contribution of this paper is taking skew laser lines as the global calibration objects,which makes the method simple and flexible.The method need no expensive equipments and can be used in large-scale calibration.
文摘To make the problems of existing high requirements of calibration tools, complex global calibration process addressed for monocular multi-view visual measurement system during measurement, in the paper, a global calibration method is proposed for the geometric properties of rotational correlation motion and the absolute orientation of the field of view without over lap. Firstly, a dual-camera system is constructed for photographing and collecting the rotating image sequence of two flat targets rigidly connected by a long rod at different positions, and based on the known parameters, such as, target feature image, world coordinates, camera internal parameters and so on, then the global PnP optimization method is used to solve the rotation axis and the reference point at different positions;Then, the absolute orientation matrix is constructed based on the parameters of rotation axis, reference point and connecting rod length obtained by this method. In the end, the singular value decomposition method is used to find the optimal rotation matrix, and then get the translation matrix. It’s shown based on simulation and actual tests that in comparison with the existing methods, the maximum attitude and pose errors is 0.0083˚ and 0.3657 mm, respectively, which improves the accuracy by 27.8% and 24.4%, respectively. The calibration device in this paper is simple, and there are no parallel, vertical and coplanar requirements between multiple rotating positions. At the same time, in view of the calibration accuracy, the accuracy requirements of most application scenarios can be met.