The Geza island-arc is a well-known mineralization concentration area, part of the Sanjiang Domain at the east margin of the Tibetan Plateau. In recent years, several Late Yanshanian granitic intrusions and associated...The Geza island-arc is a well-known mineralization concentration area, part of the Sanjiang Domain at the east margin of the Tibetan Plateau. In recent years, several Late Yanshanian granitic intrusions and associated deposits have been found in this region, the largest one of which in the Shangri-La region is the Laba molybdenum deposit. Previous studies suggested that the timing of the Laba mineralization is 85 ±2 Ma. However, the ages of the granodioritic porphyry remain unknown. In this study, LA-ICP-MS U-Pb dating of zircons from three samples of the molybdenite-bearing granodioritic porphyry has been conducted with resulting dates of 85.00±0.23 Ma (MSWD = 0.58), 85.28 ± 0.28 Ma (MSWD = 1.12), and 84.83 ± 0.26 Ma (MSWD = 0.79), respectively, indicating that these granodioritie porphyries formed in the Late Yanshanian around -85 Ma. Combined with the geological features of the mineralization, the Laba deposit is spatially, temporally, and probably genetically associated with the granodioritic porphyries. In addition, the ages of the Laba deposits are consistent with the other Late Yanshanian intrusions and mineralization, suggesting that the mineralization was probably generated under an intra-plate extensional environment during the Late Cretaceous.展开更多
Objective The Late Cretaceous Xiuwacu ore-bearing porphyry is located in the Geza area of southern Yidun arc, SW China. In this area, the rock mass is mainly composed of three lithofacies: biotite granite porphyry, ...Objective The Late Cretaceous Xiuwacu ore-bearing porphyry is located in the Geza area of southern Yidun arc, SW China. In this area, the rock mass is mainly composed of three lithofacies: biotite granite porphyry, monzonitic granite and light alkali feldspar granite. As a part of the Yidun arc, the Geza arc has common structure and temporal- spatial evolution with the ~idun arc, which has experienced three stages of oceanic crust subduction, collision orogeny and intracontinent convergence stages. The molybdenite ores in the area are mainly hosted in monzonitic granite-porphyry and structural fracture zone, and the ore bodies are strictly controlled by faults. In recent years, great geological prospecting results have been achieved in Xiuwacu, and the deposit has reached a medium scale. However, there are few researches on the metallogenic porphyry. Based on the previous research, we determined the rock-forming and ore-forming age of the porphyry, and found that there were two stages of magmatism intrusion in Xiuwacu: Indosinian and Yanshanian. We also discussed the geochemical characteristics and source area of the rocks in the area.展开更多
The porphyry copper belt in the Geza island arc in southwestern China is the only Indosinian porphyry copper metallogenic belt that has been discovered and evaluated so far.The Pulang porphyry copper deposit(also refe...The porphyry copper belt in the Geza island arc in southwestern China is the only Indosinian porphyry copper metallogenic belt that has been discovered and evaluated so far.The Pulang porphyry copper deposit(also referred to as the Pulang deposit)in this area has proven copper reserves of 5.11×106 t.This deposit has been exploited on a large scale using advanced mining methods,exhibiting substantial economic benefit.Based on many research results of previous researchers and the authors’team,this study proposed the following key insights.(1)The Geza island arc was once regarded as an immature island arc with only andesites and quartz diorite porphyrites occurring.This understanding was overturned in this study.Acidic endmember components such as quartz monzonite porphyries and quartz monzonite porphyries have been identified in the Geza island arc,and the mineralization is mainly related to the magmatism of quartz monzonite porphyries.(2)Complete porphyry orebodies and large vein orebodies have developed in the Pulang deposit.Main orebody KT1 occurs in the transition area between the potassium silicate alteration zone of quartz monzonite porphyries and the sericite-quartz alteration zone.Most of them have developed in the potassium silicate alteration zone.The main orebody occurs as large lenses at the top of the hanging wall of rock bodies,with an engineering-controlled length of 1920 m and thickness of 32.5‒630.29 m(average:187.07 m).It has a copper grade of 0.21%-1.56%(average:0.42%)and proven copper resources of 5.11×10^(6) t,which are associated with 113 t of gold,1459 t of silver,and 170×10^(3) t of molybdenum.(3)Many studies on diagenetic and metallogenic chronology,isotopes,and fluid inclusions have been carried out for the Pulang deposit,including K-Ar/Ar-Ar dating of monominerals(e.g.,potassium feldspars,biotites,and amphiboles),zircon U-Pb dating,and molybdenite Re-Os dating.The results show that the porphyries in the Pulang deposit are composite plutons and can be classified into pre-mineralizat展开更多
Objective The post-ore modification and preservation of porphyry copper deposits is controlled and influenced by various geological processes, and the regional uplift and denudation is the most important factors. Thi...Objective The post-ore modification and preservation of porphyry copper deposits is controlled and influenced by various geological processes, and the regional uplift and denudation is the most important factors. This study used biotite mineral geobarometer and Apatite Fission Track (AFT) to restore the uplift evolution of the granitic porphyries in the Geza arc and to obtain quantitative data of rock erosion degree and denudation rate.展开更多
Objective The Geza arc in Yunnan Province,located in the southern Yidun arc,is an important part of the Sanjiang tectonic-magmatic belts in southwestern China and is a newly discovered copper polymetallic ore-concentr...Objective The Geza arc in Yunnan Province,located in the southern Yidun arc,is an important part of the Sanjiang tectonic-magmatic belts in southwestern China and is a newly discovered copper polymetallic ore-concentrating district.Recent studies show that the newly discovered Yanshanian porphyry Cu-Mo polymetallic mineralization superimposed in the Indosinian porphyry copper belt in this area.展开更多
The Xiuwacu deposit is a large magmatic hydrothermal Mo-W-Cu deposit, and also a typical representative of the late Triassic mineralization in Geza Arc (Lai AQ et al., 2016;Liu XL et al., 2017). The Xiuwacu pluton int...The Xiuwacu deposit is a large magmatic hydrothermal Mo-W-Cu deposit, and also a typical representative of the late Triassic mineralization in Geza Arc (Lai AQ et al., 2016;Liu XL et al., 2017). The Xiuwacu pluton intruded into the Lamaya Formation, and contains two periods of rocks bounded by intrusive contact. Nonetheless, most of the intrusive boundaries were superposed by later fault structures.展开更多
基金supported by the China Geological Survey Research Foundation for Basic Research(grant no.12120113094600)the Science and Technology Leading Talent from Yunnan(grant no.2013HA001)+1 种基金the National Basic Research Program(grant no.2009CB421000-7)the National Natural Science Foundation(grant no.U1133602)
文摘The Geza island-arc is a well-known mineralization concentration area, part of the Sanjiang Domain at the east margin of the Tibetan Plateau. In recent years, several Late Yanshanian granitic intrusions and associated deposits have been found in this region, the largest one of which in the Shangri-La region is the Laba molybdenum deposit. Previous studies suggested that the timing of the Laba mineralization is 85 ±2 Ma. However, the ages of the granodioritic porphyry remain unknown. In this study, LA-ICP-MS U-Pb dating of zircons from three samples of the molybdenite-bearing granodioritic porphyry has been conducted with resulting dates of 85.00±0.23 Ma (MSWD = 0.58), 85.28 ± 0.28 Ma (MSWD = 1.12), and 84.83 ± 0.26 Ma (MSWD = 0.79), respectively, indicating that these granodioritie porphyries formed in the Late Yanshanian around -85 Ma. Combined with the geological features of the mineralization, the Laba deposit is spatially, temporally, and probably genetically associated with the granodioritic porphyries. In addition, the ages of the Laba deposits are consistent with the other Late Yanshanian intrusions and mineralization, suggesting that the mineralization was probably generated under an intra-plate extensional environment during the Late Cretaceous.
基金financially supported by the National Natural Science Foundation of China(grant No.41502076)the Science Research Fund of Yunnan Provincial Education Department(grant No.2015Y066)+1 种基金the Provincial People Training Program of Kunming University of Science and Technology(grant No.KKSY201421042)the Project of China Geological Survey(grant No.12120114013701)
文摘Objective The Late Cretaceous Xiuwacu ore-bearing porphyry is located in the Geza area of southern Yidun arc, SW China. In this area, the rock mass is mainly composed of three lithofacies: biotite granite porphyry, monzonitic granite and light alkali feldspar granite. As a part of the Yidun arc, the Geza arc has common structure and temporal- spatial evolution with the ~idun arc, which has experienced three stages of oceanic crust subduction, collision orogeny and intracontinent convergence stages. The molybdenite ores in the area are mainly hosted in monzonitic granite-porphyry and structural fracture zone, and the ore bodies are strictly controlled by faults. In recent years, great geological prospecting results have been achieved in Xiuwacu, and the deposit has reached a medium scale. However, there are few researches on the metallogenic porphyry. Based on the previous research, we determined the rock-forming and ore-forming age of the porphyry, and found that there were two stages of magmatism intrusion in Xiuwacu: Indosinian and Yanshanian. We also discussed the geochemical characteristics and source area of the rocks in the area.
基金jointly funded by the national key research and development program project“Strategic Mineral Information and Metallogenic Regularity of the Tethyan Metallogenic Domain”(2021YFC2901803)a project of the National Natural Science Foundation of China entitled“Geological Structure Mapping and Regional Comparative Study of the Tethyan Tectonic Domain”(92055314),International Geoscience Programme(IGCP-741)a project initiated by the China Geological Survey(DD20221910).
文摘The porphyry copper belt in the Geza island arc in southwestern China is the only Indosinian porphyry copper metallogenic belt that has been discovered and evaluated so far.The Pulang porphyry copper deposit(also referred to as the Pulang deposit)in this area has proven copper reserves of 5.11×106 t.This deposit has been exploited on a large scale using advanced mining methods,exhibiting substantial economic benefit.Based on many research results of previous researchers and the authors’team,this study proposed the following key insights.(1)The Geza island arc was once regarded as an immature island arc with only andesites and quartz diorite porphyrites occurring.This understanding was overturned in this study.Acidic endmember components such as quartz monzonite porphyries and quartz monzonite porphyries have been identified in the Geza island arc,and the mineralization is mainly related to the magmatism of quartz monzonite porphyries.(2)Complete porphyry orebodies and large vein orebodies have developed in the Pulang deposit.Main orebody KT1 occurs in the transition area between the potassium silicate alteration zone of quartz monzonite porphyries and the sericite-quartz alteration zone.Most of them have developed in the potassium silicate alteration zone.The main orebody occurs as large lenses at the top of the hanging wall of rock bodies,with an engineering-controlled length of 1920 m and thickness of 32.5‒630.29 m(average:187.07 m).It has a copper grade of 0.21%-1.56%(average:0.42%)and proven copper resources of 5.11×10^(6) t,which are associated with 113 t of gold,1459 t of silver,and 170×10^(3) t of molybdenum.(3)Many studies on diagenetic and metallogenic chronology,isotopes,and fluid inclusions have been carried out for the Pulang deposit,including K-Ar/Ar-Ar dating of monominerals(e.g.,potassium feldspars,biotites,and amphiboles),zircon U-Pb dating,and molybdenite Re-Os dating.The results show that the porphyries in the Pulang deposit are composite plutons and can be classified into pre-mineralizat
基金financially supported by the National Natural Science Foundation of China(Grant No.41502076)the National Basic Research Program of China(973 Program)(Grant No.2015CB4526056)
文摘Objective The post-ore modification and preservation of porphyry copper deposits is controlled and influenced by various geological processes, and the regional uplift and denudation is the most important factors. This study used biotite mineral geobarometer and Apatite Fission Track (AFT) to restore the uplift evolution of the granitic porphyries in the Geza arc and to obtain quantitative data of rock erosion degree and denudation rate.
基金financially supported by the National Natural Science Foundation of China (grant No.41502076)the Leading Talents Plan Project of Science and Technology of Yunnan Province (grant No.2013HA001)the Science Research Fund of Yunnan Provincial Education Department (grant No.2015Y066)
文摘Objective The Geza arc in Yunnan Province,located in the southern Yidun arc,is an important part of the Sanjiang tectonic-magmatic belts in southwestern China and is a newly discovered copper polymetallic ore-concentrating district.Recent studies show that the newly discovered Yanshanian porphyry Cu-Mo polymetallic mineralization superimposed in the Indosinian porphyry copper belt in this area.
文摘The Xiuwacu deposit is a large magmatic hydrothermal Mo-W-Cu deposit, and also a typical representative of the late Triassic mineralization in Geza Arc (Lai AQ et al., 2016;Liu XL et al., 2017). The Xiuwacu pluton intruded into the Lamaya Formation, and contains two periods of rocks bounded by intrusive contact. Nonetheless, most of the intrusive boundaries were superposed by later fault structures.