期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于遥感光谱和空间变量随机森林的黄河三角洲刺槐林健康等级分类
被引量:
16
1
作者
赵玉
王红
张珍珍
《遥感技术与应用》
CSCD
北大核心
2016年第2期359-367,共9页
对刺槐林健康状况进行准确分类制图,是进行刺槐林健康状况评估与生态修复的前提。以高分辨率IKONOS影像、基于影像提取的不同窗口、不同灰度共生矩阵纹理信息以及反映局部空间自相关的Local Getis-Ord Gi(Getis统计量)为数据源,结合实...
对刺槐林健康状况进行准确分类制图,是进行刺槐林健康状况评估与生态修复的前提。以高分辨率IKONOS影像、基于影像提取的不同窗口、不同灰度共生矩阵纹理信息以及反映局部空间自相关的Local Getis-Ord Gi(Getis统计量)为数据源,结合实测生态样方数据,利用多决策树的组合分类模型随机森林(RF)对刺槐林健康进行分级,对6种方法的分类精度进行了比较且对分类变量的重要性进行了排序。结果显示:19m×19m是最佳纹理计算窗口;灰度共生矩阵均值是最优纹理变量;基于波段4计算的Getis统计量对RF分类具有最重要的作用;较之利用全部光谱、纹理和Getis统计量的80个波段/变量,利用前向选择得到的前16个重要性变量进行RF分类,获得了最高的分类精度(总精度为93.14%,Kappa系数为0.894)。研究证实了从高分影像提取的空间特征信息有助于提高对具有规则分布格局的人工刺槐林健康等级的分类精度;前向选择方法可以利用较少的预测变量获得较高的分类精度。
展开更多
关键词
枯梢
随机森林
灰度共生矩阵
getis
统
计量
黄河三角洲
原文传递
题名
基于遥感光谱和空间变量随机森林的黄河三角洲刺槐林健康等级分类
被引量:
16
1
作者
赵玉
王红
张珍珍
机构
河海大学地球科学与工程学院
出处
《遥感技术与应用》
CSCD
北大核心
2016年第2期359-367,共9页
基金
国家自然科学基金项目"黄河三角洲滨海湿地生态系统健康监测与预报"(40871230)
国家自然科学基金项目"黄河三角刺槐林健康时空变化成因及模拟"(41471419)资助
文摘
对刺槐林健康状况进行准确分类制图,是进行刺槐林健康状况评估与生态修复的前提。以高分辨率IKONOS影像、基于影像提取的不同窗口、不同灰度共生矩阵纹理信息以及反映局部空间自相关的Local Getis-Ord Gi(Getis统计量)为数据源,结合实测生态样方数据,利用多决策树的组合分类模型随机森林(RF)对刺槐林健康进行分级,对6种方法的分类精度进行了比较且对分类变量的重要性进行了排序。结果显示:19m×19m是最佳纹理计算窗口;灰度共生矩阵均值是最优纹理变量;基于波段4计算的Getis统计量对RF分类具有最重要的作用;较之利用全部光谱、纹理和Getis统计量的80个波段/变量,利用前向选择得到的前16个重要性变量进行RF分类,获得了最高的分类精度(总精度为93.14%,Kappa系数为0.894)。研究证实了从高分影像提取的空间特征信息有助于提高对具有规则分布格局的人工刺槐林健康等级的分类精度;前向选择方法可以利用较少的预测变量获得较高的分类精度。
关键词
枯梢
随机森林
灰度共生矩阵
getis
统
计量
黄河三角洲
Keywords
Dieback Random forest
Gray level co-occurrence matrix
Local
getis
-Ord Gi Yellow RiverDelta
分类号
TP79 [自动化与计算机技术—检测技术与自动化装置]
原文传递
题名
作者
出处
发文年
被引量
操作
1
基于遥感光谱和空间变量随机森林的黄河三角洲刺槐林健康等级分类
赵玉
王红
张珍珍
《遥感技术与应用》
CSCD
北大核心
2016
16
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部