A comprehensive study in this paper for the lithosphere velocity structure, conductivity structure, density and magnetism structure at the Qinghai-Xizang(Tibetan) Plateau has been completed based on the data of gravit...A comprehensive study in this paper for the lithosphere velocity structure, conductivity structure, density and magnetism structure at the Qinghai-Xizang(Tibetan) Plateau has been completed based on the data of gravity, geomagnetism, and magneto-telluric sounding (MTS), explosion seismology acquired on the comprehensive geophysical profile along Gyirong-Sange-展开更多
An isotopic study was systemically carried out on the granitic complex,diorite-porphyrite, ores and ore minerals of the 103 Ma Xiaoxinancha gold-rich copper deposit in Jilin province to determine the geodynamic model ...An isotopic study was systemically carried out on the granitic complex,diorite-porphyrite, ores and ore minerals of the 103 Ma Xiaoxinancha gold-rich copper deposit in Jilin province to determine the geodynamic model of diagenesis and metallogenesis.Results show that the initial Nd and Sr isotopic compositions of the granitic complex are in the range of 0.70425-0.70505 for(87Sr/86Sr)i, 0.51243-0.51264 for INd,and -1.31 to +2.64 forεNd(t);those of the diorite-porphyrite are in the range from 0.70438-0.70448 for(87Sr/86Sr),,0.51259-0.51261 for INd,and +1.56 to +2.09 forεNd(t).For ores and sulfides,the(87Sr/86Sr)i,7Nd,andεNd(t) values are in the range from 0.70440-0.70805,0.51259- 0.51279 and +1.72 to +5.56,respectively.The Pb isotopic ratios of the granitic complex range from 18.2992-18.6636 for 206Pb/204Pb,from 15.5343-15.5660 for 207Pb/204Pb,and from 38.1640-38.5657 for 208Pb/204Pb For diorite-porphyrite,the isotopic ratios of 206Pb/204Pb,207Pb/204Pb and 208Pb/204Pb are 18.3919,15.5794 and 38.3566,respectively,whereas those of the ores and ore sulfides vary from 18.2275-18.3770 for 206Pb/204Pb,from 15.5555-15.5934 for 207Pb/204Pb and from 38.1318-38.3131 for 208Pb/204Pb.The results indicate that the mineralization was correlated to the formation and evolution of the granitic complex and the diorite-porphyrite.Combining with the reported data in petrologic characteristics,elemental geochemistry and chronology,conclusions can be drawn that the geodynamic settings of diagenesis and metallogenesis of this deposit were consistent with the subduction of the Izanagi oceanic plate during the Early Cretaceous.The diorite-porphyrite was formed by the emplacement of the adakitic magma triggered by partial melting of the enriched mantle,which originated from the derivative continental lithospheric mantle metasomatized by dehydration fluids from the subducting oceanic crust.The granitic complex was produced by fractional crystallization of the mixture between the adakitic magma and the hig展开更多
The plate flexure and normal faulting characteristics along the Tonga, Japan, Izu-Bonin and Mariana Trenches are investigated by combining observations and modeling of elastoplastic deformation of the subducting plate...The plate flexure and normal faulting characteristics along the Tonga, Japan, Izu-Bonin and Mariana Trenches are investigated by combining observations and modeling of elastoplastic deformation of the subducting plate. The observed average trench relief is found to be the smallest at the Japan Trench(3 km) and the largest at the Mariana Trench(4.9 km), and the average fault throw is the smallest at the Japan Trench(113 m) and the largest at the Tonga Trench(284 m). A subducting plate is modeled to bend and generate normal faults subjected to three types of tectonic loading at the trench axis: vertical loading, bending moment, and horizontal tensional force. It is inverted for the solutions of tectonic loading that best fit the observed plate flexure and normal faulting characteristics of the four trenches. The results reveal that a horizontal tensional force(HTF) for the Japan Trench is 33%, 50% and 60% smaller than those of the Mariana, Tonga and Izu-Bonin Trenches, respectively. The normal faults are modeled to penetrate to a maximum depth of 29, 23, 32 and 32 km below the sea floor for the Tonga,Japan, Izu-Bonin and Mariana Trenches, respectively, which is consistent with the depths of relocated normal faulting earthquakes in the Japan and Izu-Bonin Trenches. Moreover, it is argued that the calculated horizontal tensional force is generally positively correlated with the observed mean fault throw, while the integrated area of the reduction in the effective elastic thickness is correlated with the trench relief. These results imply that the HTF plays a key role in controlling the normal faulting pattern and that plate weakening can lead to significant increase in the trench relief.展开更多
In this contribution we use VMS mineral systems in the Bryah rift-basin to constrain the tectonic setting of the widespread mafic and ultramafic magmatism that characterises the rift-basin in question.Two distinct,but...In this contribution we use VMS mineral systems in the Bryah rift-basin to constrain the tectonic setting of the widespread mafic and ultramafic magmatism that characterises the rift-basin in question.Two distinct,but temporally closely associated,lithostratigraphic sequences,Narracoota and Karalundi Formations,are discussed.The Karalundi Formation is the main host of VMS mineral systems in the region.The Karalundi Formation consists of turbiditic and immature clastic sediments,which are locally intercalated with basaltic hyaloclastites,dolerites and banded jaspilites.We propose that the basaltic hyaloclastites,dolerites and elastics and jaspilites rocks,form a distinct unit of the Karalundi Formation,named Noonyereena Member.The VMS mineral systems occur near the north-east trendingJenkin Fault and comprise the giant and world-class DeCrussa and the Red Bore deposits.The nature of these deposits and their intimate association with terrigenous clastic rocks and dominantly marine mafic volcanic and subvolcanic rocks,as well as the common development of peperitic margins,are considered indicative of a Besshi-type environment,similar to that of present-day Gulf of California.Our Re-Os age data from a primary pyrite yielded a mean model age of 2012 ± 48 Ma,which coincides(within error) with recent published Re-Os data(Hawke et al.,2015) and confirms the timing of the proposed geodynamic evolution.We propose a geodynamic model that attempts to explain the presence of the Narracoota and Karalundi Formations as the result of mantle plume activity,which began with early uplift of continental crust with intraplate volcanism,followed by early stages of rifting with the deposition of the Karalundi Formation(and Noonyereena Member),which led to the formation of Besshi-type VMS deposits.With on-going mantle plume activity and early stages of continental separation,an oceanic plateau was formed and is now represented by mafic-ultramafic rocks of the Narracoota Formation.展开更多
A recent integrated geophysical survey has been completed along a transect from Baicheng, Xinjiang to Da Qaidam, Qinghai, China. In this study, wide-angle seismic reflection/refraction exploration with 10 shot points ...A recent integrated geophysical survey has been completed along a transect from Baicheng, Xinjiang to Da Qaidam, Qinghai, China. In this study, wide-angle seismic reflection/refraction exploration with 10 shot points has been carried out to acquire the velocity structure of the crust and uppermost mantle. The earthquake focal mechanism solutions and terrestrial heat flow along the transect have also been obtained and analyzed. Based on the velocity structure of the crust and uppermost mantle along the transect, and combined with the focal mechanism solutions and terrestrial heat flow we develop a geodynamic model for the northern margin of the Tibetan plateau. This model reveals the detailed structure of the crust and uppermost mantle, determines the relationship of basin and range coupling, explores the deep dynamic setting for superposed basins, and establishes the northern boundary condition for Tibetan plateau research.展开更多
文摘A comprehensive study in this paper for the lithosphere velocity structure, conductivity structure, density and magnetism structure at the Qinghai-Xizang(Tibetan) Plateau has been completed based on the data of gravity, geomagnetism, and magneto-telluric sounding (MTS), explosion seismology acquired on the comprehensive geophysical profile along Gyirong-Sange-
基金supported by the National Natural Science Foundation of China(Nos.40472050 and 40772050)the Natural Science Foundation of Jilin Provincial Science and Technology(grant no.20080452)+1 种基金funds from the State Key Laboratory for Mineral Deposits Research,Nanjing University(2006-2005,2006- 2008)Key Laboratory of Mineral Resources, Chinese Academy of Sciences(2009-2012)
文摘An isotopic study was systemically carried out on the granitic complex,diorite-porphyrite, ores and ore minerals of the 103 Ma Xiaoxinancha gold-rich copper deposit in Jilin province to determine the geodynamic model of diagenesis and metallogenesis.Results show that the initial Nd and Sr isotopic compositions of the granitic complex are in the range of 0.70425-0.70505 for(87Sr/86Sr)i, 0.51243-0.51264 for INd,and -1.31 to +2.64 forεNd(t);those of the diorite-porphyrite are in the range from 0.70438-0.70448 for(87Sr/86Sr),,0.51259-0.51261 for INd,and +1.56 to +2.09 forεNd(t).For ores and sulfides,the(87Sr/86Sr)i,7Nd,andεNd(t) values are in the range from 0.70440-0.70805,0.51259- 0.51279 and +1.72 to +5.56,respectively.The Pb isotopic ratios of the granitic complex range from 18.2992-18.6636 for 206Pb/204Pb,from 15.5343-15.5660 for 207Pb/204Pb,and from 38.1640-38.5657 for 208Pb/204Pb For diorite-porphyrite,the isotopic ratios of 206Pb/204Pb,207Pb/204Pb and 208Pb/204Pb are 18.3919,15.5794 and 38.3566,respectively,whereas those of the ores and ore sulfides vary from 18.2275-18.3770 for 206Pb/204Pb,from 15.5555-15.5934 for 207Pb/204Pb and from 38.1318-38.3131 for 208Pb/204Pb.The results indicate that the mineralization was correlated to the formation and evolution of the granitic complex and the diorite-porphyrite.Combining with the reported data in petrologic characteristics,elemental geochemistry and chronology,conclusions can be drawn that the geodynamic settings of diagenesis and metallogenesis of this deposit were consistent with the subduction of the Izanagi oceanic plate during the Early Cretaceous.The diorite-porphyrite was formed by the emplacement of the adakitic magma triggered by partial melting of the enriched mantle,which originated from the derivative continental lithospheric mantle metasomatized by dehydration fluids from the subducting oceanic crust.The granitic complex was produced by fractional crystallization of the mixture between the adakitic magma and the hig
基金The National Natural Science Foundation of China under contract Nos 41706056,91628301 and U1606401the Program of Chinese Academy of Sciences under contract Nos Y4SL021001,QYZDY-SSW-DQC005,YZ201325 and YZ201534+1 种基金the Natural Science Foundation of Guangdong Province of China under contract No.2017A030310066the China Ocean Mineral Resources R&D Association under contract No.DY135-S2-1-04
文摘The plate flexure and normal faulting characteristics along the Tonga, Japan, Izu-Bonin and Mariana Trenches are investigated by combining observations and modeling of elastoplastic deformation of the subducting plate. The observed average trench relief is found to be the smallest at the Japan Trench(3 km) and the largest at the Mariana Trench(4.9 km), and the average fault throw is the smallest at the Japan Trench(113 m) and the largest at the Tonga Trench(284 m). A subducting plate is modeled to bend and generate normal faults subjected to three types of tectonic loading at the trench axis: vertical loading, bending moment, and horizontal tensional force. It is inverted for the solutions of tectonic loading that best fit the observed plate flexure and normal faulting characteristics of the four trenches. The results reveal that a horizontal tensional force(HTF) for the Japan Trench is 33%, 50% and 60% smaller than those of the Mariana, Tonga and Izu-Bonin Trenches, respectively. The normal faults are modeled to penetrate to a maximum depth of 29, 23, 32 and 32 km below the sea floor for the Tonga,Japan, Izu-Bonin and Mariana Trenches, respectively, which is consistent with the depths of relocated normal faulting earthquakes in the Japan and Izu-Bonin Trenches. Moreover, it is argued that the calculated horizontal tensional force is generally positively correlated with the observed mean fault throw, while the integrated area of the reduction in the effective elastic thickness is correlated with the trench relief. These results imply that the HTF plays a key role in controlling the normal faulting pattern and that plate weakening can lead to significant increase in the trench relief.
文摘In this contribution we use VMS mineral systems in the Bryah rift-basin to constrain the tectonic setting of the widespread mafic and ultramafic magmatism that characterises the rift-basin in question.Two distinct,but temporally closely associated,lithostratigraphic sequences,Narracoota and Karalundi Formations,are discussed.The Karalundi Formation is the main host of VMS mineral systems in the region.The Karalundi Formation consists of turbiditic and immature clastic sediments,which are locally intercalated with basaltic hyaloclastites,dolerites and banded jaspilites.We propose that the basaltic hyaloclastites,dolerites and elastics and jaspilites rocks,form a distinct unit of the Karalundi Formation,named Noonyereena Member.The VMS mineral systems occur near the north-east trendingJenkin Fault and comprise the giant and world-class DeCrussa and the Red Bore deposits.The nature of these deposits and their intimate association with terrigenous clastic rocks and dominantly marine mafic volcanic and subvolcanic rocks,as well as the common development of peperitic margins,are considered indicative of a Besshi-type environment,similar to that of present-day Gulf of California.Our Re-Os age data from a primary pyrite yielded a mean model age of 2012 ± 48 Ma,which coincides(within error) with recent published Re-Os data(Hawke et al.,2015) and confirms the timing of the proposed geodynamic evolution.We propose a geodynamic model that attempts to explain the presence of the Narracoota and Karalundi Formations as the result of mantle plume activity,which began with early uplift of continental crust with intraplate volcanism,followed by early stages of rifting with the deposition of the Karalundi Formation(and Noonyereena Member),which led to the formation of Besshi-type VMS deposits.With on-going mantle plume activity and early stages of continental separation,an oceanic plateau was formed and is now represented by mafic-ultramafic rocks of the Narracoota Formation.
基金financially supported by the National Key Basic Research Program (G1999043301)the National Natural Science Foundation of China (Grant Nos. 40930317 and41104055)the Sino Probe-02 project and the NSFC Innovation Research Group Fund (Grant No. 41021001)
文摘A recent integrated geophysical survey has been completed along a transect from Baicheng, Xinjiang to Da Qaidam, Qinghai, China. In this study, wide-angle seismic reflection/refraction exploration with 10 shot points has been carried out to acquire the velocity structure of the crust and uppermost mantle. The earthquake focal mechanism solutions and terrestrial heat flow along the transect have also been obtained and analyzed. Based on the velocity structure of the crust and uppermost mantle along the transect, and combined with the focal mechanism solutions and terrestrial heat flow we develop a geodynamic model for the northern margin of the Tibetan plateau. This model reveals the detailed structure of the crust and uppermost mantle, determines the relationship of basin and range coupling, explores the deep dynamic setting for superposed basins, and establishes the northern boundary condition for Tibetan plateau research.