The selection and use of low-Cd-accumulating cultivar (LCAC) has been proposed as one of the promising approaches in minimizing the entry of Cd in the human food chain. This study suggests a screening criterion of L...The selection and use of low-Cd-accumulating cultivar (LCAC) has been proposed as one of the promising approaches in minimizing the entry of Cd in the human food chain. This study suggests a screening criterion of LCACs focusing on food safety. Pot culture and plot experiments were conducted to screen out LCACs from 35 pakchoi cultivars and to identify the crucial soil factors that affect Cd accumulation in LCACs. Results of the pot culture experiment showed that shoot Cd concentrations under the three Cd treatments significantly varied across cultivars. Two cultivars, Hualv 2 and Huajun 2, were identified as LCACs because their shoot Cd concentrations were lower than 0.2 mg. kg-1 under low Cd treatment and high Cd exposure did not affect the biomass of their shoots. The plot experiment further confirmed the consistency and genotypic stability of the low-Cd- accumulating traits of the two LCACs under various soil conditions. Results also showed that soil phosphorus availability was the most important soil factor in the Cd accumulation of pakchoi, which related negatively not only to Cd uptake by root but also to Cd translocation from root to shoot. The total Cd accumulation and translocation rates were lower in the LCACs than in the high-Cd cultivar, suggesting that Cd accumulation in different cultivars is associated with the Cd uptake by root as well as translocation from root to shoot. This study proves the feasibility of the application of the LCAC strategy in pakchoi cultivation to cope with Cd contamination in agricultural soils.展开更多
The objective of this work was to evaluate if cryostorage of Phaseolus vulgaris L. seeds induced variations in regenerated plants at the phenotypic and molecular levels. A series of agricultural traits was measured on...The objective of this work was to evaluate if cryostorage of Phaseolus vulgaris L. seeds induced variations in regenerated plants at the phenotypic and molecular levels. A series of agricultural traits was measured on plants grown from control, non-cryopreserved and cryopreserved seeds, and the genetic stability of plants of the second generation was analysed at selected microsatellite loci. The phenotype of the second generation plants was evaluated as well. No statistically significant phenotypic differences were observed for the parameters measured, neither in the first nor in the second generations. Averaging both treatments, about 76% of the seeds had germinated 10 days after sowing. At harvest we recorded plants with about 73 cm in height, 13 stem internodes, 25 fruits, 103 grains and 4 grains per fruit. One hundred seeds weighted about 26 g. The genetic analyses performed on the second generation plants using six nuclear Simple Sequences Repeats (SSR) markers revealed no changes in microsatellite length between control and cryopreserved samples, implying that there was no effect of seed liquid nitrogen exposure on genome integrity. The phenotypic and molecular results reported here confirm that cryostorage is an efficient and reliable technique to conserve P. vulgaris seeds and regenerate true-to-type plants.展开更多
The Food and Agriculture Organization has highlighted pineapple as one of the most important tropical fruits. Since classical pineapple breeding is difficult, biotechnology has emerged as an attractive instrument. We ...The Food and Agriculture Organization has highlighted pineapple as one of the most important tropical fruits. Since classical pineapple breeding is difficult, biotechnology has emerged as an attractive instrument. We obtained two new pineapple somaclonal variants derived from in vitro culture of cv. Red Spanish Pinar: P3R5 and Dwarf. The AFLP analysis revealed an existing genetic distance. So far 44 phenotype indicators selected due to their relation to a wide range of important agricultural, morphological and physiological processes have been evaluated. P3R5 differed from the donor in 19 variables (19/44;43.18%), while Dwarf varied in 31 indicators (31/44;70.45%). The number of shoots was significantly different among the three plant materials. Dwarf showed two shoots per plant while P3R5 and the donor did not form any shoots. We also observed that water use efficiency, chlorophyll b concentration, total chlorophyll concentration, transpiration rate, chlorophyll a concentration, thickness of leaf photosynthetic parenchyma, fruit mass with crown, content of free phenolics and superoxide dismutase specific activity were also very different among the three plant materials. The Euclidean distances of each somaclonal variant to the donor plant material taking into consideration the genotype (AFLP) and the phenotype evaluations were also calculated. Regarding the genotype information, P3R5 is separated from cv. Red Spanish Pinar by 2.83 units of Euclidean distance, and Dwarf by 3.00 units. However, the phenotype indicators revealed higher differences: 3.74 in P3R5 and 4.71 in Dwarf. To our knowledge, this is the first report of a comprehensive analysis of pineapple somaclonal variants.展开更多
文摘The selection and use of low-Cd-accumulating cultivar (LCAC) has been proposed as one of the promising approaches in minimizing the entry of Cd in the human food chain. This study suggests a screening criterion of LCACs focusing on food safety. Pot culture and plot experiments were conducted to screen out LCACs from 35 pakchoi cultivars and to identify the crucial soil factors that affect Cd accumulation in LCACs. Results of the pot culture experiment showed that shoot Cd concentrations under the three Cd treatments significantly varied across cultivars. Two cultivars, Hualv 2 and Huajun 2, were identified as LCACs because their shoot Cd concentrations were lower than 0.2 mg. kg-1 under low Cd treatment and high Cd exposure did not affect the biomass of their shoots. The plot experiment further confirmed the consistency and genotypic stability of the low-Cd- accumulating traits of the two LCACs under various soil conditions. Results also showed that soil phosphorus availability was the most important soil factor in the Cd accumulation of pakchoi, which related negatively not only to Cd uptake by root but also to Cd translocation from root to shoot. The total Cd accumulation and translocation rates were lower in the LCACs than in the high-Cd cultivar, suggesting that Cd accumulation in different cultivars is associated with the Cd uptake by root as well as translocation from root to shoot. This study proves the feasibility of the application of the LCAC strategy in pakchoi cultivation to cope with Cd contamination in agricultural soils.
文摘The objective of this work was to evaluate if cryostorage of Phaseolus vulgaris L. seeds induced variations in regenerated plants at the phenotypic and molecular levels. A series of agricultural traits was measured on plants grown from control, non-cryopreserved and cryopreserved seeds, and the genetic stability of plants of the second generation was analysed at selected microsatellite loci. The phenotype of the second generation plants was evaluated as well. No statistically significant phenotypic differences were observed for the parameters measured, neither in the first nor in the second generations. Averaging both treatments, about 76% of the seeds had germinated 10 days after sowing. At harvest we recorded plants with about 73 cm in height, 13 stem internodes, 25 fruits, 103 grains and 4 grains per fruit. One hundred seeds weighted about 26 g. The genetic analyses performed on the second generation plants using six nuclear Simple Sequences Repeats (SSR) markers revealed no changes in microsatellite length between control and cryopreserved samples, implying that there was no effect of seed liquid nitrogen exposure on genome integrity. The phenotypic and molecular results reported here confirm that cryostorage is an efficient and reliable technique to conserve P. vulgaris seeds and regenerate true-to-type plants.
文摘The Food and Agriculture Organization has highlighted pineapple as one of the most important tropical fruits. Since classical pineapple breeding is difficult, biotechnology has emerged as an attractive instrument. We obtained two new pineapple somaclonal variants derived from in vitro culture of cv. Red Spanish Pinar: P3R5 and Dwarf. The AFLP analysis revealed an existing genetic distance. So far 44 phenotype indicators selected due to their relation to a wide range of important agricultural, morphological and physiological processes have been evaluated. P3R5 differed from the donor in 19 variables (19/44;43.18%), while Dwarf varied in 31 indicators (31/44;70.45%). The number of shoots was significantly different among the three plant materials. Dwarf showed two shoots per plant while P3R5 and the donor did not form any shoots. We also observed that water use efficiency, chlorophyll b concentration, total chlorophyll concentration, transpiration rate, chlorophyll a concentration, thickness of leaf photosynthetic parenchyma, fruit mass with crown, content of free phenolics and superoxide dismutase specific activity were also very different among the three plant materials. The Euclidean distances of each somaclonal variant to the donor plant material taking into consideration the genotype (AFLP) and the phenotype evaluations were also calculated. Regarding the genotype information, P3R5 is separated from cv. Red Spanish Pinar by 2.83 units of Euclidean distance, and Dwarf by 3.00 units. However, the phenotype indicators revealed higher differences: 3.74 in P3R5 and 4.71 in Dwarf. To our knowledge, this is the first report of a comprehensive analysis of pineapple somaclonal variants.