Drought is the most important environmental stress affecting agriculture worldwide. Exploiting yield potential and maintaining yield stability of crops in water-limited environments are urgent tasks that must be under...Drought is the most important environmental stress affecting agriculture worldwide. Exploiting yield potential and maintaining yield stability of crops in water-limited environments are urgent tasks that must be undertaken in order to guarantee food supply for the increasing world population. Tremendous efforts have been devoted to identifying key regulators in plant drought response through genetic, molecular, and biochemical studies using, in most cases, the model species Arabidopsis thaliana. However, only a small portion of these regulators have been explored as potential candidate genes for their application in the improvement of drought tolerance in crops. Based on biological functions, these genes can be classified into the following three categories: (1) stress-responsive transcriptional regulation (e.g. DREB1, AREB, NF-YB); (2) post-transcriptional RNA or protein modifications such as phosphorylation/dephosphorylation (e.g. SnRK2, ABI1) and farnesylation (e.g. ERA1); and (3) osomoprotectant metabolism or molecular chaperones (e.g. CspB). While continuing down the path to discovery of new target genes, serious efforts are also focused on fine-tuning the expression of the known candidate genes for stress tolerance in specific temporal and spatial patterns to avoid negative effects in plant growth and development. These efforts are starting to bear fruit by showing yield improvements in several crops under a variety of water-deprivation conditions. As most such evaluations have been performed under controlled growth environments, a gap still remains between early success in the laboratory and the application of these techniques to the elite cultivars of staple crops in the field. Nevertheless, significant progress has been made in the identification of signaling pathways and master regulators for drought tolerance. The knowledge acquired will facilitate the genetic engineering of single or multiple targets and quantitative trait loci in key crops to create commercialrade cultiv展开更多
将政和大白茶鲜叶置于LED黄光下照射萎凋16 h,以室内萎凋为对照,按工夫红茶工艺制成毛茶。对萎凋过程中萎凋叶的β-葡萄糖苷酶基因(CsBG1、CsBG2)、β-樱草糖苷酶基因(CsBP)的相对表达量、β-葡萄糖苷酶的活性,及毛茶挥发性香气组分进...将政和大白茶鲜叶置于LED黄光下照射萎凋16 h,以室内萎凋为对照,按工夫红茶工艺制成毛茶。对萎凋过程中萎凋叶的β-葡萄糖苷酶基因(CsBG1、CsBG2)、β-樱草糖苷酶基因(CsBP)的相对表达量、β-葡萄糖苷酶的活性,及毛茶挥发性香气组分进行分析,结合感官审评,研究黄光萎凋对工夫红茶品质的影响。结果表明,在LED黄光萎凋下,CsBG1、CsBG2表达量明显提高,萎凋第6 h CsBG2相对表达量最高,显著高于对照组;CsBP在黄光萎凋全过程呈上调表达。LED黄光前期促进萎凋叶香气相关酶基因上调表达,在萎凋后期调控β-葡萄糖苷酶活性提高,最终使得工夫红茶甜花香显现,品质提升。展开更多
The genetic expression of four quality traits, grain length (GL), grain width (GW), gelatinizationtemperature (GT) and amylose content (AC) was identified each by two indica/japonica crosses using two indica andthree ...The genetic expression of four quality traits, grain length (GL), grain width (GW), gelatinizationtemperature (GT) and amylose content (AC) was identified each by two indica/japonica crosses using two indica andthree japonica cultivars. The genetic expression of GL and GW is completely subject to the diploid maternal genotype, and that of GT and AC is controlled by the diploid maternal genotype as well as the triploid endosperm genotype. The endosperm genotype may play the main role in the genetic expression of GT and AC.展开更多
A transformation model for Laminaria japonica was established from 1993 to 1998, on the basis of which the transgenic kelp with heterologous gene encoding hepatitis B surface antigen (HBsAg) was obtained by using the ...A transformation model for Laminaria japonica was established from 1993 to 1998, on the basis of which the transgenic kelp with heterologous gene encoding hepatitis B surface antigen (HBsAg) was obtained by using the micro-particle bombardment transformation method. Results of quantitative ELISA showed that HBsAg in transgenic kelp was 0.529μg/mg soluble proteins on average and the highest value was 2.497μg/mg, implying that recombinant HBsAg had natural epitope. Further support for the integration of HBsAg gene into kelp genome was obtained by PCR-Southern and total DNA hybridization. Prospect of kelp bio-reactor producing high value materials such as edible HBY vaccine was discussed as well.展开更多
文摘Drought is the most important environmental stress affecting agriculture worldwide. Exploiting yield potential and maintaining yield stability of crops in water-limited environments are urgent tasks that must be undertaken in order to guarantee food supply for the increasing world population. Tremendous efforts have been devoted to identifying key regulators in plant drought response through genetic, molecular, and biochemical studies using, in most cases, the model species Arabidopsis thaliana. However, only a small portion of these regulators have been explored as potential candidate genes for their application in the improvement of drought tolerance in crops. Based on biological functions, these genes can be classified into the following three categories: (1) stress-responsive transcriptional regulation (e.g. DREB1, AREB, NF-YB); (2) post-transcriptional RNA or protein modifications such as phosphorylation/dephosphorylation (e.g. SnRK2, ABI1) and farnesylation (e.g. ERA1); and (3) osomoprotectant metabolism or molecular chaperones (e.g. CspB). While continuing down the path to discovery of new target genes, serious efforts are also focused on fine-tuning the expression of the known candidate genes for stress tolerance in specific temporal and spatial patterns to avoid negative effects in plant growth and development. These efforts are starting to bear fruit by showing yield improvements in several crops under a variety of water-deprivation conditions. As most such evaluations have been performed under controlled growth environments, a gap still remains between early success in the laboratory and the application of these techniques to the elite cultivars of staple crops in the field. Nevertheless, significant progress has been made in the identification of signaling pathways and master regulators for drought tolerance. The knowledge acquired will facilitate the genetic engineering of single or multiple targets and quantitative trait loci in key crops to create commercialrade cultiv
文摘将政和大白茶鲜叶置于LED黄光下照射萎凋16 h,以室内萎凋为对照,按工夫红茶工艺制成毛茶。对萎凋过程中萎凋叶的β-葡萄糖苷酶基因(CsBG1、CsBG2)、β-樱草糖苷酶基因(CsBP)的相对表达量、β-葡萄糖苷酶的活性,及毛茶挥发性香气组分进行分析,结合感官审评,研究黄光萎凋对工夫红茶品质的影响。结果表明,在LED黄光萎凋下,CsBG1、CsBG2表达量明显提高,萎凋第6 h CsBG2相对表达量最高,显著高于对照组;CsBP在黄光萎凋全过程呈上调表达。LED黄光前期促进萎凋叶香气相关酶基因上调表达,在萎凋后期调控β-葡萄糖苷酶活性提高,最终使得工夫红茶甜花香显现,品质提升。
文摘The genetic expression of four quality traits, grain length (GL), grain width (GW), gelatinizationtemperature (GT) and amylose content (AC) was identified each by two indica/japonica crosses using two indica andthree japonica cultivars. The genetic expression of GL and GW is completely subject to the diploid maternal genotype, and that of GT and AC is controlled by the diploid maternal genotype as well as the triploid endosperm genotype. The endosperm genotype may play the main role in the genetic expression of GT and AC.
基金This work was supported by National Climbing Plan B(Grant No. PDB6-4-1)National Natural Science Foundation of China (Grant No. 39400076)and Shandong Province Gongguan Plan (Grant No. 991051109).
文摘A transformation model for Laminaria japonica was established from 1993 to 1998, on the basis of which the transgenic kelp with heterologous gene encoding hepatitis B surface antigen (HBsAg) was obtained by using the micro-particle bombardment transformation method. Results of quantitative ELISA showed that HBsAg in transgenic kelp was 0.529μg/mg soluble proteins on average and the highest value was 2.497μg/mg, implying that recombinant HBsAg had natural epitope. Further support for the integration of HBsAg gene into kelp genome was obtained by PCR-Southern and total DNA hybridization. Prospect of kelp bio-reactor producing high value materials such as edible HBY vaccine was discussed as well.