期刊文献+
共找到2,256篇文章
< 1 2 113 >
每页显示 20 50 100
生成式对抗网络GAN的研究进展与展望 被引量:320
1
作者 王坤峰 苟超 +3 位作者 段艳杰 林懿伦 郑心湖 王飞跃 《自动化学报》 EI CSCD 北大核心 2017年第3期321-332,共12页
生成式对抗网络GAN(Generative adversarial networks)目前已经成为人工智能学界一个热门的研究方向.GAN的基本思想源自博弈论的二人零和博弈,由一个生成器和一个判别器构成,通过对抗学习的方式来训练.目的是估测数据样本的潜在分布并... 生成式对抗网络GAN(Generative adversarial networks)目前已经成为人工智能学界一个热门的研究方向.GAN的基本思想源自博弈论的二人零和博弈,由一个生成器和一个判别器构成,通过对抗学习的方式来训练.目的是估测数据样本的潜在分布并生成新的数据样本.在图像和视觉计算、语音和语言处理、信息安全、棋类比赛等领域,GAN正在被广泛研究,具有巨大的应用前景.本文概括了GAN的研究进展,并进行展望.在总结了GAN的背景、理论与实现模型、应用领域、优缺点及发展趋势之后,本文还讨论了GAN与平行智能的关系,认为GAN可以深化平行系统的虚实互动、交互一体的理念,特别是计算实验的思想,为ACP(Artificial societies,computational experiments,and parallel execution)理论提供了十分具体和丰富的算法支持. 展开更多
关键词 生成式对抗网络 生成式模型 零和博弈 对抗学习 平行智能 ACP方法
下载PDF
人工智能研究的新前线:生成式对抗网络 被引量:82
2
作者 林懿伦 戴星原 +2 位作者 李力 王晓 王飞跃 《自动化学报》 EI CSCD 北大核心 2018年第5期775-792,共18页
生成式对抗网络(Generative adversarial networks,GAN)是当前人工智能学界最为重要的研究热点之一.其突出的生成能力不仅可用于生成各类图像和自然语言数据,还启发和推动了各类半监督学习和无监督学习任务的发展.本文概括了GAN的基本思... 生成式对抗网络(Generative adversarial networks,GAN)是当前人工智能学界最为重要的研究热点之一.其突出的生成能力不仅可用于生成各类图像和自然语言数据,还启发和推动了各类半监督学习和无监督学习任务的发展.本文概括了GAN的基本思想,并对近年来相关的理论与应用研究进行了梳理,总结了GAN常见的网络结构与训练方法,博弈形式,集成方法,并对一些应用场景进行了介绍.在此基础上,本文对GAN发展的内在逻辑进行了归纳总结. 展开更多
关键词 深度学习 生成式对抗网络 生成模型 对抗学习 平行学习
下载PDF
生成式对抗网络及其计算机视觉应用研究综述 被引量:67
3
作者 曹仰杰 贾丽丽 +2 位作者 陈永霞 林楠 李学相 《中国图象图形学报》 CSCD 北大核心 2018年第10期1433-1449,共17页
目的生成式对抗网络(GAN)的出现为计算机视觉应用提供了新的技术和手段,它以独特零和博弈与对抗训练的思想生成高质量的样本,具有比传统机器学习算法更强大的特征学习和特征表达能力。目前在机器视觉领域尤其是样本生成领域取得了显著... 目的生成式对抗网络(GAN)的出现为计算机视觉应用提供了新的技术和手段,它以独特零和博弈与对抗训练的思想生成高质量的样本,具有比传统机器学习算法更强大的特征学习和特征表达能力。目前在机器视觉领域尤其是样本生成领域取得了显著的成功,是当前研究的热点方向之一。方法以生成式对抗网络的不同模型及其在计算机视觉领域的应用为研究对象,在广泛调研文献特别是GAN的最新发展成果基础上,结合不同模型的对比试验,对每种方法的基本思想、方法特点及使用场景进行分析,并对GAN的优势与劣势进行总结,阐述了GAN研究的现状、在计算机视觉上的应用范围,归纳生成式对抗网络在高质量图像生成、风格迁移与图像翻译、文本与图像的相互生成和图像的还原与修复等多个计算机视觉领域的研究现状和发展趋势,并对每种应用的理论改进之处、优点、局限性及使用场景进行了总结,对未来可能的发展方向进行展望。结果 GAN的不同模型在生成样本质量与性能上各有优劣。当前的GAN模型在图像的处理上取得较大的成就,能生成以假乱真的样本,但是也存在网络不收敛、模型易崩溃、过于自由不可控的问题。结论 GAN作为一种新的生成模型具有很高的研究价值与应用价值,但目前存在一些理论上的桎梏亟待突破,在应用方面生成高质量的样本、逼真的场景是值得研究的方向。 展开更多
关键词 生成式对抗网络 计算机视觉 图像生成 图像风格迁移 图像修复
原文传递
基于二维灰度图的数据增强方法在电机轴承故障诊断的应用研究 被引量:43
4
作者 肖雄 肖宇雄 +2 位作者 张勇军 宋国明 张飞 《中国电机工程学报》 EI CSCD 北大核心 2021年第2期738-748,共11页
在基于深度学习的电机轴承故障诊断中,一般采用基于生成对抗网络(generative adversarial networks,GANs)的数据增强方法以获取足量故障数据,从而保证模型的性能。一维时序信号下的数据增强会出现生成数据质量差、网络训练速度慢以及训... 在基于深度学习的电机轴承故障诊断中,一般采用基于生成对抗网络(generative adversarial networks,GANs)的数据增强方法以获取足量故障数据,从而保证模型的性能。一维时序信号下的数据增强会出现生成数据质量差、网络训练速度慢以及训练过程繁琐等问题,该文针对此,提出一种基于二维灰度图及辅助分类生成对抗网络(2D gray pixel images and auxiliary classifier generative adversarial networks,2D-ACGANs)的数据增强方法。首先将原始的一维时序信号转换为二维灰度图,以得到适用于二维卷积神经网络的输入数据;在此基础上结合辅助分类生成对抗网络,将原始数据的标签作为此网络的输入进行数据增强,该方法较一维数据增强方法有效减少网络训练参数量,同时解决传统方法中训练繁琐及标签信息丢失的问题。最后将提出的方法用于电机轴承的故障实验数据中进行对比验证,结果表明改进的2D-ACGANs算法能生成更高质量的数据,有效提高故障识别准确率及网络训练速度,具备良好的工程应用可行性。 展开更多
关键词 电机轴承 故障诊断 生成对抗网络 二维灰度图 数据增强
下载PDF
机器学习中的特征选择方法研究及展望 被引量:41
5
作者 崔鸿雁 徐帅 +2 位作者 张利锋 Roy E.Welsch Berthold K.P.Horn 《北京邮电大学学报》 EI CAS CSCD 北大核心 2018年第1期1-12,共12页
任何领域的大数据研究都离不开用机器学习方法提取特征.为了探求满足海量大数据分析需求的特征选择方法,笔者对利用机器学习进行特征选择的常用方法做了深入分析,归纳总结出特征选择的五大类方法:相关性度量方法、Lasso稀疏选择方法、... 任何领域的大数据研究都离不开用机器学习方法提取特征.为了探求满足海量大数据分析需求的特征选择方法,笔者对利用机器学习进行特征选择的常用方法做了深入分析,归纳总结出特征选择的五大类方法:相关性度量方法、Lasso稀疏选择方法、集成方法、神经网络方法、主成分分析方法.通过对比不同特征选择方法的原理、实现过程以及应用场景,给出了不同算法下进行特征选择时的适用范围、优缺点和关键点,为研究者提供参考. 展开更多
关键词 机器学习 特征选择 迁移学习 对抗神经网络 人工智能
原文传递
采用非平衡小样本数据的风机主轴承故障深度对抗诊断 被引量:29
6
作者 黄南天 杨学航 +3 位作者 蔡国伟 宋星 陈庆珠 赵文广 《中国电机工程学报》 EI CSCD 北大核心 2020年第2期563-574,共12页
风机主轴承振动信号中存在噪声干扰,且实验环境下获取众多故障类型与故障程度数据难度大、成本高。为提高高噪声环境下基于小样本非平衡振动数据的风机主轴承故障诊断准确率,提出采用改进辅助分类生成对抗网络(auxiliary classifier gen... 风机主轴承振动信号中存在噪声干扰,且实验环境下获取众多故障类型与故障程度数据难度大、成本高。为提高高噪声环境下基于小样本非平衡振动数据的风机主轴承故障诊断准确率,提出采用改进辅助分类生成对抗网络(auxiliary classifier generative adversarial networks,AC-GAN)的风机主轴承故障诊断新方法。首先,在AC-GAN生成器中加入Dropout层,防止过拟合导致生成重复的样本数据,保证样本生成质量。之后,在AC-GAN判别器加入卷积层,提取更多细节特征,并引入噪声过渡模型、重定义损失函数,提高判别器抗噪能力。然后,为训练样本添加标签约束,使生成器针对性生成大量符合真实样本概率分布特性的非平衡场景下小样本故障类型数据,由此,实现判别器增强。最后,通过判别器与生成器博弈达到平衡,提高小样本非平衡场景下故障识别准确率。实验表明,在高噪声干扰、样本数量不足及不同类型样本训练集规模非平衡等复杂场景下,新方法依然能够保持良好的主轴承故障识别准确率。 展开更多
关键词 风机主轴承故障 小样本 非平衡 生成对抗性网络 辅助分类器
下载PDF
基于生成对抗网络的运动模糊图像复原 被引量:26
7
作者 桑亮 高爽 尹增山 《计算机工程与应用》 CSCD 北大核心 2019年第6期173-177,共5页
针对相机成像时相机抖动、物体运动等导致图像产生运动模糊这一十分具有挑战性的问题,提出基于生成对抗网络的深度卷积神经网络来复原模糊图像的解决方案。该方案省略了模糊核估计的过程,采用端对端的方式直接获取复原图像;通过引入生... 针对相机成像时相机抖动、物体运动等导致图像产生运动模糊这一十分具有挑战性的问题,提出基于生成对抗网络的深度卷积神经网络来复原模糊图像的解决方案。该方案省略了模糊核估计的过程,采用端对端的方式直接获取复原图像;通过引入生成对抗网络思想的对抗损失和对残差网络进行改进,有效地复原了图像的细节信息。最后通过训练此深度卷积神经网络模型并在相关模糊复原基准数据集上测试,证明了该方案取得了较好的结果。 展开更多
关键词 运动模糊 图像复原 生成对抗网络 深度学习
下载PDF
基于生成对抗网络的人脸表情数据增强方法 被引量:25
8
作者 孙晓 丁小龙 《计算机工程与应用》 CSCD 北大核心 2020年第4期115-121,共7页
基于深度学习的方法已经在人脸表情识别中取得了重大进展,然而人脸表情数据库的规模普遍不大。为了解决数据量不足的问题,提出了一种静态图像数据增强方法。在StarGAN的基础上修改重构误差实现多风格人脸表情图像转换,利用生成器由某一... 基于深度学习的方法已经在人脸表情识别中取得了重大进展,然而人脸表情数据库的规模普遍不大。为了解决数据量不足的问题,提出了一种静态图像数据增强方法。在StarGAN的基础上修改重构误差实现多风格人脸表情图像转换,利用生成器由某一表情下的面部图像生成同一人其他表情的面部图像。在CK+表情库上的实验表明,该方法有利于提高人脸表情识别模型的识别率和泛化能力,同时对解决数据量不平衡的问题也有借鉴作用。 展开更多
关键词 数据增强 生成对抗网络 人脸表情识别 深度学习
下载PDF
生成对抗网络研究综述 被引量:25
9
作者 邹秀芳 朱定局 《计算机系统应用》 2019年第11期1-9,共9页
自生成对抗网络GAN提出以后,现这一方向已成为人工智能方向的研究热点. GAN的思想采用二人零和博弈方法,由生成器和判别器构成,生成器负责生成样本分布,判别器则判别输入是真实样本还是生成样本,生成器和判别器不断交互优化,最终达到最... 自生成对抗网络GAN提出以后,现这一方向已成为人工智能方向的研究热点. GAN的思想采用二人零和博弈方法,由生成器和判别器构成,生成器负责生成样本分布,判别器则判别输入是真实样本还是生成样本,生成器和判别器不断交互优化,最终达到最优效果. GAN模型的提出无疑是很新颖的,但也存在很多缺点,比如梯度消失问题、模式崩溃等.随着研究的深入, GAN不断优化扩展, GAN的衍生模型也层出不穷. GAN可应用于不同领域,主要为计算机图像和视觉领域,在图像领域有着突出的效果,能生成高分辨率逼真的图像,能对图像进行修复、风格迁移等,也能生成视频并进行预测等. GAN也能生成文本,可以进行对话生成、机器翻译、语音生成等.同时,GAN在其他领域也有涉及,比如生成音乐、密码破译等.但是GAN在其他领域的应用效果并不显著,那么,如何提高GAN在其他领域的应用效果将值得深入研究,使生成对抗网络在人工智能方面大放异彩. 展开更多
关键词 生成对抗网络 梯度消失 模式崩溃 图像领域 风格迁移 机器翻译
下载PDF
基于改进生成对抗网络和MobileNetV3的带钢缺陷分类 被引量:24
10
作者 常江 管声启 +2 位作者 师红宇 胡璐萍 倪奕棋 《激光与光电子学进展》 CSCD 北大核心 2021年第4期213-218,共6页
针对数据集样本数量较少会影响深度学习检测效果的问题,提出了一种基于改进生成对抗网络和MobileNetV3的带钢缺陷分类方法。首先,引入生成对抗网络并对生成器和判别器进行改进,解决了类别错乱问题并实现了带钢缺陷数据集的扩充。然后,... 针对数据集样本数量较少会影响深度学习检测效果的问题,提出了一种基于改进生成对抗网络和MobileNetV3的带钢缺陷分类方法。首先,引入生成对抗网络并对生成器和判别器进行改进,解决了类别错乱问题并实现了带钢缺陷数据集的扩充。然后,对轻量级图像分类网络MobileNetV3进行改进。最后,在扩充后的数据集上训练,实现了带钢缺陷的分类。实验结果表明,改进的生成对抗网络可生成比较真实的带钢缺陷图像,同时解决深度学习中样本不足的问题;且改进的MobileNetV3参数量是原有参数量的1/14左右,准确率为94.67%,比改进前提高了2.62个百分点,可在工业现场对带钢缺陷进行实时准确的分类。 展开更多
关键词 图像处理 缺陷检测 图像分类 生成对抗网络 数据增强
原文传递
基于深度学习的单图像超分辨率重建研究综述 被引量:23
11
作者 南方哲 钱育蓉 +1 位作者 行艳妮 赵京霞 《计算机应用研究》 CSCD 北大核心 2020年第2期321-326,共6页
为深入了解基于深度学习的单图像超分辨率重建(SISR)的发展,把握当前研究的热点和方向,针对现有基于深度学习的单图像超分辨率重建模型进行了梳理。介绍了相关深度学习算法和基于深度学习的模型以及评价指标,并通过实验对比分析现有模... 为深入了解基于深度学习的单图像超分辨率重建(SISR)的发展,把握当前研究的热点和方向,针对现有基于深度学习的单图像超分辨率重建模型进行了梳理。介绍了相关深度学习算法和基于深度学习的模型以及评价指标,并通过实验对比分析现有模型的性能,其目的在于从本质上了解基于深度学习的单图像超分辨率重建模型的优势;对单图像超分辨率重建的关键问题进行了总结,并对未来的发展趋势进行了展望。 展开更多
关键词 单图像超分辨率重建 深度学习 密集卷积网络 生成式对抗网络
下载PDF
基于Faster R-CNN的除草机器人杂草识别算法 被引量:22
12
作者 李春明 逯杉婷 +1 位作者 远松灵 王震洲 《中国农机化学报》 北大核心 2019年第12期171-176,共6页
针对当前除草机器人杂草识别定位不准确、实时性差等问题,提出一种基于Faster R-CNN的草坪杂草识别算法。该方法首先使用快速区域卷积神经网络(Faster R-CNN)算法训练初始化模型,然后通过在网络池化层后添加生成对抗网络(GAN)噪声层来... 针对当前除草机器人杂草识别定位不准确、实时性差等问题,提出一种基于Faster R-CNN的草坪杂草识别算法。该方法首先使用快速区域卷积神经网络(Faster R-CNN)算法训练初始化模型,然后通过在网络池化层后添加生成对抗网络(GAN)噪声层来提高网络的鲁棒性。试验结果表明,该种方法在正常拍摄的测试集图片中识别率达到97.05%,在加噪图片测试集的识别率达到95.15%,识别结果均优于传统的机器学习方法。同时,本方法具有识别速度快的特点,可用于实时检测,在园林杂草清理等方面具有应用价值。 展开更多
关键词 杂草识别 深度学习 快速区域卷积神经网络 区域建议网络 生成对抗网络
下载PDF
生成对抗网络GAN的研究综述 被引量:21
13
作者 汪美琴 袁伟伟 张继业 《计算机工程与设计》 北大核心 2021年第12期3389-3395,共7页
为深入研究GAN这一热点模型,对基本GAN模型的原理、优点以及存在的问题进行分析;介绍GAN的发展以及不同的衍生模型,进一步说明GAN模型所做贡献,由此提出未来GAN衍生的改进方向的建议;描述GAN模型在图像、目标检测、文本合成、信息安全... 为深入研究GAN这一热点模型,对基本GAN模型的原理、优点以及存在的问题进行分析;介绍GAN的发展以及不同的衍生模型,进一步说明GAN模型所做贡献,由此提出未来GAN衍生的改进方向的建议;描述GAN模型在图像、目标检测、文本合成、信息安全等各个领域的应用现状,总结其应用优势、局限性,针对其存在的问题,提出一些改善方法;对本文进行总结以及对该领域未来的研究方向提出一些展望。 展开更多
关键词 生成对抗网络 机器学习 生成模型 图像生成 信息安全
下载PDF
Generating geologically realistic 3D reservoir facies models using deep learning of sedimentary architecture with generative adversarial networks 被引量:19
14
作者 Tuan-Feng Zhang Peter Tilke +3 位作者 Emilien Dupont Ling-Chen Zhu Lin Liang William Bailey 《Petroleum Science》 SCIE CAS CSCD 2019年第3期541-549,共9页
This paper proposes a novel approach for generating 3-dimensional complex geological facies models based on deep generative models.It can reproduce a wide range of conceptual geological models while possessing the fle... This paper proposes a novel approach for generating 3-dimensional complex geological facies models based on deep generative models.It can reproduce a wide range of conceptual geological models while possessing the flexibility necessary to honor constraints such as well data.Compared with existing geostatistics-based modeling methods,our approach produces realistic subsurface facies architecture in 3D using a state-of-the-art deep learning method called generative adversarial networks(GANs).GANs couple a generator with a discriminator,and each uses a deep convolutional neural network.The networks are trained in an adversarial manner until the generator can create "fake" images that the discriminator cannot distinguish from "real" images.We extend the original GAN approach to 3D geological modeling at the reservoir scale.The GANs are trained using a library of 3D facies models.Once the GANs have been trained,they can generate a variety of geologically realistic facies models constrained by well data interpretations.This geomodelling approach using GANs has been tested on models of both complex fluvial depositional systems and carbonate reservoirs that exhibit progradational and aggradational trends.The results demonstrate that this deep learning-driven modeling approach can capture more realistic facies architectures and associations than existing geostatistical modeling methods,which often fail to reproduce heterogeneous nonstationary sedimentary facies with apparent depositional trend. 展开更多
关键词 GEOLOGICAL FACIES Geomodeling Data conditioning generative adversarial networks
下载PDF
基于半监督生成对抗网络X光图像分类算法 被引量:20
15
作者 刘坤 王典 荣梦学 《光学学报》 EI CAS CSCD 北大核心 2019年第8期109-117,共9页
利用半监督学习体系结构中的生成对抗性网络,围绕标注数据稀缺性的问题进行研究,在传统无监督生成对抗网络的基础上用softmax替代最后的输出层,使其扩展为半监督生成对抗网络。对生成样本定义额外的类别标签,用于引导训练,采用半监督训... 利用半监督学习体系结构中的生成对抗性网络,围绕标注数据稀缺性的问题进行研究,在传统无监督生成对抗网络的基础上用softmax替代最后的输出层,使其扩展为半监督生成对抗网络。对生成样本定义额外的类别标签,用于引导训练,采用半监督训练方式对网络参数进行优化,并将训练得到的判别网络运用于X光图像分类中。对于胸部X光图像,结合自动化分类诊断选取了6种肺部疾病的X光前视图进行实验,结果表明:所提算法提高了利用标注数据的监督学习性能,与其他半监督分类方法相比具有优越的性能。 展开更多
关键词 图像处理 图像分类 X光图像 生成对抗网络 半监督学习 标注数据
原文传递
生成对抗网络理论框架、衍生模型与应用最新进展 被引量:19
16
作者 赵增顺 高寒旭 +3 位作者 孙骞 滕升华 常发亮 Dapeng Oliver Wu 《小型微型计算机系统》 CSCD 北大核心 2018年第12期2602-2606,共5页
近年来,生成对抗网络发展迅速,尤其在图像处理方面表现突出.由于深度网络的强大和竞争性训练方式,生成对抗网络可以产生高质量的图像.本文论述了生成对抗网络的理论框架及衍生模型,简要介绍了其训练方法,重点介绍了生成对抗网络在图像... 近年来,生成对抗网络发展迅速,尤其在图像处理方面表现突出.由于深度网络的强大和竞争性训练方式,生成对抗网络可以产生高质量的图像.本文论述了生成对抗网络的理论框架及衍生模型,简要介绍了其训练方法,重点介绍了生成对抗网络在图像处理领域的应用,包括图像的合成与分类,图像风格转换,图像超分辨率和其他应用. 展开更多
关键词 生成对抗网络 深度学习 卷积神经网络 图像合成
下载PDF
基于DRGAN和支持向量机的合成孔径雷达图像目标识别 被引量:19
17
作者 徐英 谷雨 +1 位作者 彭冬亮 刘俊 《光学精密工程》 EI CAS CSCD 北大核心 2020年第3期727-735,共9页
为解决SAR图像目标识别中样本缺乏和方位角敏感问题,提出了一种基于DRGAN和SVM的SAR图像目标识别算法。首先,采用多尺度分形特征对SAR图像进行增强,经过分割得到目标二值图像,基于Hu二阶矩估计目标的方位角。然后对估计得到的目标方位... 为解决SAR图像目标识别中样本缺乏和方位角敏感问题,提出了一种基于DRGAN和SVM的SAR图像目标识别算法。首先,采用多尺度分形特征对SAR图像进行增强,经过分割得到目标二值图像,基于Hu二阶矩估计目标的方位角。然后对估计得到的目标方位角进行量化编码,结合原始图像作为输入,对设计的DRGAN模型参数进行训练与优化。由于DRGAN中的深度生成模型将目标姿态与外观表示进行解耦设计,故可利用该模型将SAR图像样本变换到同一方位角区间。基于变换后的训练样本分别提取归一化灰度特征,利用SVM训练分类器。采用MSTAR数据集在多个不同操作条件下对提出的算法进行测试,实验结果表明,在带变体的标准操作条件下,能够达到97.97%的分类精度,优于部分基于CNN模型的分类精度,在4种扩展操作条件下的分类精度分别为97.83%,91.77%,97.11%和97.04%,均优于传统方法的分类精度。在SAR图像目标方位角估计存在一定误差的情况下,训练得到的GAN模型作为SAR图像目标旋转估计器,能够使得在不进行复杂样本预处理的前提下,仍然取得较高的SAR图像目标识别精度。 展开更多
关键词 合成孔径雷达图像 目标识别 生成对抗网络 方位角估计 支持向量顶
下载PDF
基于生成对抗网络GAN的人工智能临近预报方法研究 被引量:19
18
作者 陈元昭 林良勋 +3 位作者 王蕊 兰红平 叶允明 陈训来 《大气科学学报》 CSCD 北大核心 2019年第2期311-320,共10页
研究设计了基于生成对抗网络(Generative Adversarial Networks,GAN)的人工智能临近预报方法,并进行了业务试验。该方法利用广东12部S波段天气雷达2015—2017年海量雷达拼图资料进行人工智能学习来做临近预报。GAN方法从一系列雷达观测... 研究设计了基于生成对抗网络(Generative Adversarial Networks,GAN)的人工智能临近预报方法,并进行了业务试验。该方法利用广东12部S波段天气雷达2015—2017年海量雷达拼图资料进行人工智能学习来做临近预报。GAN方法从一系列雷达观测资料中,运用卷积法提取回波图像信息建立预报模型,并通过损失函数训练模型,得到基于人工智能技术的临近预报。对2018年发生在广东地区的4个天气过程的外推预报试验表明,GAN方法对对流天气过程的回波位置、形状及强度的临近预报多数情况下与实况基本一致,具有较好的预报效果。但是该方法预报的回波范围偏大,对层状云降水的预报效果较差。对西风带系统引起的降水,西南季风降水,东风系统引起的降水以及台风降水的18个个例1 h预报的3个级别的回波强度检验发现,GAN方法对中等强度回波的预报较好,但对强回波的预报效果仍有待提高。 展开更多
关键词 人工智能 生成对抗网络 雷达回波 临近预报
下载PDF
生成式对抗神经网络的多帧红外图像超分辨率重建 被引量:18
19
作者 李方彪 何昕 +2 位作者 魏仲慧 何家维 何丁龙 《红外与激光工程》 EI CSCD 北大核心 2018年第2期17-24,共8页
生成式对抗神经网络在约束图像生成表现出了巨大潜力,使得其适合运用于图像超分辨率重建。但是使用生成式对抗神经网络重建后的超分辨率图像存在过度平滑,缺少高频细节信息的缺点。针对单帧图像超分辨率重建方法不能有效利用图像序列间... 生成式对抗神经网络在约束图像生成表现出了巨大潜力,使得其适合运用于图像超分辨率重建。但是使用生成式对抗神经网络重建后的超分辨率图像存在过度平滑,缺少高频细节信息的缺点。针对单帧图像超分辨率重建方法不能有效利用图像序列间的时间-空间相关性的问题,提出了一种基于生成式对抗神经网络的多帧红外图像超分辨率重建方法(M-GANs)。首先,对低分辨率图像序列进行运动补偿;其次,使用权值表示卷积层对运动补偿后的图像序列进行权值转换计算;最后,将其输入生成式对抗重建网络,输出重建后的高分辨率图像。实验结果表明:文中方法在主观及客观评价中均优于当前代表性的超分辨率重建方法。 展开更多
关键词 超分辨率重建 深度学习 生成式对抗神经网络 红外成像
下载PDF
生成对抗网络图像处理综述 被引量:17
20
作者 朱秀昌 唐贵进 《南京邮电大学学报(自然科学版)》 北大核心 2019年第3期1-12,共12页
2014年提出的生成对抗网络(Generative Adversarial Networks,GAN)是近年来神经网络领域中为数不多的一项新锐技术。GAN在常见生成模型的基础上增加了一个判别模型,以形成巧妙的对抗学习机制,使它能够产生更高质量的图像。近年来各种改... 2014年提出的生成对抗网络(Generative Adversarial Networks,GAN)是近年来神经网络领域中为数不多的一项新锐技术。GAN在常见生成模型的基础上增加了一个判别模型,以形成巧妙的对抗学习机制,使它能够产生更高质量的图像。近年来各种改进型GAN在图像处理领域得到广泛应用,不但覆盖了几乎所有传统图像处理领域,还包括一些新应用,如图像编辑、图像翻译、风格转移等,普遍取得了胜过传统方法的良好结果。文中在简要分析GAN的系统结构、对抗生成和网络训练的基础上,重点介绍了为提高GAN性能、克服现存缺陷和满足不同应用而出现的多种改进型GAN,如DC-GAN、W-GAN、Big-GAN等。尽管如此,目前GAN尚处于初始发展阶段,将来的前途不可估量。 展开更多
关键词 深度学习 生成对抗网络 图像处理 生成模型 判别模型
下载PDF
上一页 1 2 113 下一页 到第
使用帮助 返回顶部