This paper uses a novel scenario generation method for tackling the uncertainties of wind power in the transmission network expansion planning(TNEP)problem.A heuristic moment matching(HMM)method is first applied to ge...This paper uses a novel scenario generation method for tackling the uncertainties of wind power in the transmission network expansion planning(TNEP)problem.A heuristic moment matching(HMM)method is first applied to generate the typical scenarios for capturing the stochastic features of wind power,including expectation,standard deviation,skewness,kurtosis,and correlation of multiple wind farms.Then,based on the typical scenarios,a robust TNEP problem is presented and formulated.The solution of the problem is robust against all the scenarios that represent the stochastic features of wind power.Three test systems are used to verify the HMM method and is compared against Taguchi’s Orthogonal Array(OA)method.The simulation results show that the HMM method has better performance than the OA method in terms of the trade-off between robustness and economy.Additionally,the main factors influencing the planning scheme are studied,including the number of scenarios,wind farm capacity,and penalty factors,which provide a reference for system operators choosing parameters.展开更多
This paper proposes a novel method for transmission network expansion planning(TNEP)that take into account uncertainties in loads and renewable energy resources.The goal of TNEP is to minimize the expansion cost of ca...This paper proposes a novel method for transmission network expansion planning(TNEP)that take into account uncertainties in loads and renewable energy resources.The goal of TNEP is to minimize the expansion cost of candidate lines without any load curtailment.A robust linear optimization algorithm is adopted to minimize the load curtailment with uncertainties considered under feasible expansion costs.Hence,the optimal planning scheme obtained through an iterative process would be to serve loads and provide a sufficient margin for renewable energy integration.In this paper,two uncertainty budget parameters are introduced in the optimization process to limit the considered variation ranges for both the load and the renewable generation.Simulation results obtained from two test systems indicate that the uncertainty budget parameters used to describe uncertainties are essential to arrive at a compromise for the robustness and optimality,and hence,offer a range of preferences to power system planners and decision makers.展开更多
Concerning the integration of large-scale wind power,an integrated model of generation and transmission expansion planning is proposed based on the assessment of the value of steady state and dynamic security.In the a...Concerning the integration of large-scale wind power,an integrated model of generation and transmission expansion planning is proposed based on the assessment of the value of steady state and dynamic security.In the assessment of security value,the unit commitment simulation based on the predicted hourly load and wind power output data in the planning horizon is used to evaluate the costs of preventive control,emergency control and social losses due to the uncertainty of load and wind power.The cost of preventive control consists of the fuel cost of power generation,the environmental cost and the load shedding cost.This not only provides a systematic method of security assessment of power system expansion planning schemes,but also broadens the perspective of power system planning from the technology and economic assessment to the measure of the whole social value.In the assessment process,the preventive control and emergency control of cascading failures are also presented,which provides a convincing tool for cascading failure analysis of planning schemes and makes the security assessment more comprehensive and reasonable.The proposed model and method have been demonstrated by the assessment of two power system planning schemes on the New England 10-genarator 39-bus System.The importance of considering the value of security and simulating hourly system operation for the planning horizon,in expansion planning of power system with integration of large-scale wind power,has been confirmed.展开更多
To address the planning issue of offshore oil-field power systems, an integrated generation-transmission expansion planning model is proposed. The outage cost is considered and the genetic Tabu hybrid algorithm(GTHA)i...To address the planning issue of offshore oil-field power systems, an integrated generation-transmission expansion planning model is proposed. The outage cost is considered and the genetic Tabu hybrid algorithm(GTHA)is developed to find the optimal solution. With the proposed integrated model, the planning of generators and transmission lines can be worked out simultaneously,which outweighs the disadvantages of separate planning,for instance, unable to consider the influence of power grid during the planning of generation, or insufficient to plan the transmission system without enough information of generation. The integrated planning model takes into account both the outage cost and the shipping cost, which makes the model more practical for offshore oilfield power systems. The planning problem formulated based on the proposed model is a mixed integer nonlinear programming problem of very high computational complexity, which is difficult to solve by regular mathematical methods. A comprehensive optimization method based on GTHA is also developed to search the best solution efficiently.Finally, a case study on the planning of a 50-bus offshore oilfield power system is conducted, and the obtained results fully demonstrate the effectiveness of the presented model and method.展开更多
电源规划与电网规划紧密相关,有必要考虑其相互影响进行协同规划。该文兼顾分布式决策环境与多适应性条件,提出了一种电源与电网协同的多适应规划框架,利用交替方向乘子法(alternating direction method of multipliers,ADM M)分别构建...电源规划与电网规划紧密相关,有必要考虑其相互影响进行协同规划。该文兼顾分布式决策环境与多适应性条件,提出了一种电源与电网协同的多适应规划框架,利用交替方向乘子法(alternating direction method of multipliers,ADM M)分别构建了耦合共享变量的电源规划决策子问题与电网规划决策子问题,2个子问题相互通信、交替求解,实现了电源与网架协同的分布式自治规划。该框架和方法保留了决策主体信息的私密性,同时确保了电源规划方案和电网规划方案所构成的整体系统的经济性和适应性。在Garver-6系统上对该文方法的有效性进行了验证。展开更多
基金supported in part by the National Natural Science Foundation of China under Grant No.51377027The National Basic Research Program of China under Grant No.2013CB228205by Innovation Project of Guangxi Graduate Education under Grant No.YCSZ2015053.
文摘This paper uses a novel scenario generation method for tackling the uncertainties of wind power in the transmission network expansion planning(TNEP)problem.A heuristic moment matching(HMM)method is first applied to generate the typical scenarios for capturing the stochastic features of wind power,including expectation,standard deviation,skewness,kurtosis,and correlation of multiple wind farms.Then,based on the typical scenarios,a robust TNEP problem is presented and formulated.The solution of the problem is robust against all the scenarios that represent the stochastic features of wind power.Three test systems are used to verify the HMM method and is compared against Taguchi’s Orthogonal Array(OA)method.The simulation results show that the HMM method has better performance than the OA method in terms of the trade-off between robustness and economy.Additionally,the main factors influencing the planning scheme are studied,including the number of scenarios,wind farm capacity,and penalty factors,which provide a reference for system operators choosing parameters.
基金supported by the National Basic Research Program of China(2012CB215106).
文摘This paper proposes a novel method for transmission network expansion planning(TNEP)that take into account uncertainties in loads and renewable energy resources.The goal of TNEP is to minimize the expansion cost of candidate lines without any load curtailment.A robust linear optimization algorithm is adopted to minimize the load curtailment with uncertainties considered under feasible expansion costs.Hence,the optimal planning scheme obtained through an iterative process would be to serve loads and provide a sufficient margin for renewable energy integration.In this paper,two uncertainty budget parameters are introduced in the optimization process to limit the considered variation ranges for both the load and the renewable generation.Simulation results obtained from two test systems indicate that the uncertainty budget parameters used to describe uncertainties are essential to arrive at a compromise for the robustness and optimality,and hence,offer a range of preferences to power system planners and decision makers.
文摘Concerning the integration of large-scale wind power,an integrated model of generation and transmission expansion planning is proposed based on the assessment of the value of steady state and dynamic security.In the assessment of security value,the unit commitment simulation based on the predicted hourly load and wind power output data in the planning horizon is used to evaluate the costs of preventive control,emergency control and social losses due to the uncertainty of load and wind power.The cost of preventive control consists of the fuel cost of power generation,the environmental cost and the load shedding cost.This not only provides a systematic method of security assessment of power system expansion planning schemes,but also broadens the perspective of power system planning from the technology and economic assessment to the measure of the whole social value.In the assessment process,the preventive control and emergency control of cascading failures are also presented,which provides a convincing tool for cascading failure analysis of planning schemes and makes the security assessment more comprehensive and reasonable.The proposed model and method have been demonstrated by the assessment of two power system planning schemes on the New England 10-genarator 39-bus System.The importance of considering the value of security and simulating hourly system operation for the planning horizon,in expansion planning of power system with integration of large-scale wind power,has been confirmed.
基金supported by National Natural Science Foundation of China (No. 51322701)National High Technology Research and Development Program of China (863 Program) (No. 2012AA050216)
文摘To address the planning issue of offshore oil-field power systems, an integrated generation-transmission expansion planning model is proposed. The outage cost is considered and the genetic Tabu hybrid algorithm(GTHA)is developed to find the optimal solution. With the proposed integrated model, the planning of generators and transmission lines can be worked out simultaneously,which outweighs the disadvantages of separate planning,for instance, unable to consider the influence of power grid during the planning of generation, or insufficient to plan the transmission system without enough information of generation. The integrated planning model takes into account both the outage cost and the shipping cost, which makes the model more practical for offshore oilfield power systems. The planning problem formulated based on the proposed model is a mixed integer nonlinear programming problem of very high computational complexity, which is difficult to solve by regular mathematical methods. A comprehensive optimization method based on GTHA is also developed to search the best solution efficiently.Finally, a case study on the planning of a 50-bus offshore oilfield power system is conducted, and the obtained results fully demonstrate the effectiveness of the presented model and method.
文摘电源规划与电网规划紧密相关,有必要考虑其相互影响进行协同规划。该文兼顾分布式决策环境与多适应性条件,提出了一种电源与电网协同的多适应规划框架,利用交替方向乘子法(alternating direction method of multipliers,ADM M)分别构建了耦合共享变量的电源规划决策子问题与电网规划决策子问题,2个子问题相互通信、交替求解,实现了电源与网架协同的分布式自治规划。该框架和方法保留了决策主体信息的私密性,同时确保了电源规划方案和电网规划方案所构成的整体系统的经济性和适应性。在Garver-6系统上对该文方法的有效性进行了验证。