This paper presents a robust time delay estimation algorithm for the α-Stable noise based on correntropy. Many time delay estimation algorithms derived for impulsive stable noise are based on the theory of Fractional...This paper presents a robust time delay estimation algorithm for the α-Stable noise based on correntropy. Many time delay estimation algorithms derived for impulsive stable noise are based on the theory of Fractional Lower Order Statistics (FLOS). Unlike previously introduced FLOS-type algorithms, the new algorithm is proposed to estimate the time delay by maximizing the generalized correlation function of two observed signals needing neither prior information nor estimation of the numerical value of the stable noise's characteristic exponent. An interval for kernel selection is found for a wide range of characteristic exponent values of α-Stable distribution. Simulations show the proposed algorithm offers superior performance over the existing covariation time delay estimation, least mean p-norm time delay estimation and achieves slightly improved performance than fractional lower order covariance time delay estimation at lower signal to noise ratio when the noise is highly impulsive.展开更多
针对相干分布式非圆信号参数估计算法在脉冲噪声环境下性能退化的问题,本文提出了广义复相关熵的概念,并给出了基于广义复相关熵的相干分布式非圆信号DOA(Direction of Arrival)估计方法。该算法首先由分布式信源模型获得入射信号的阵...针对相干分布式非圆信号参数估计算法在脉冲噪声环境下性能退化的问题,本文提出了广义复相关熵的概念,并给出了基于广义复相关熵的相干分布式非圆信号DOA(Direction of Arrival)估计方法。该算法首先由分布式信源模型获得入射信号的阵列输出信号,利用信号的非圆特性得到扩展阵列输出信号,再通过扩展阵列输出信号的广义复相关熵矩阵获取信号子空间,避开了传统二阶统计量算法在脉冲噪声下不适应的问题,最后由信号子空间旋转不变特性得到信号的中心波达方向角度。仿真实验结果表明,在Alpha稳定分布噪声条件下,与传统算法相比,本文所提算法具有更好的性能。展开更多
基金Supported by the Chinese National Science Foundation(No.60872122)
文摘This paper presents a robust time delay estimation algorithm for the α-Stable noise based on correntropy. Many time delay estimation algorithms derived for impulsive stable noise are based on the theory of Fractional Lower Order Statistics (FLOS). Unlike previously introduced FLOS-type algorithms, the new algorithm is proposed to estimate the time delay by maximizing the generalized correlation function of two observed signals needing neither prior information nor estimation of the numerical value of the stable noise's characteristic exponent. An interval for kernel selection is found for a wide range of characteristic exponent values of α-Stable distribution. Simulations show the proposed algorithm offers superior performance over the existing covariation time delay estimation, least mean p-norm time delay estimation and achieves slightly improved performance than fractional lower order covariance time delay estimation at lower signal to noise ratio when the noise is highly impulsive.
文摘针对相干分布式非圆信号参数估计算法在脉冲噪声环境下性能退化的问题,本文提出了广义复相关熵的概念,并给出了基于广义复相关熵的相干分布式非圆信号DOA(Direction of Arrival)估计方法。该算法首先由分布式信源模型获得入射信号的阵列输出信号,利用信号的非圆特性得到扩展阵列输出信号,再通过扩展阵列输出信号的广义复相关熵矩阵获取信号子空间,避开了传统二阶统计量算法在脉冲噪声下不适应的问题,最后由信号子空间旋转不变特性得到信号的中心波达方向角度。仿真实验结果表明,在Alpha稳定分布噪声条件下,与传统算法相比,本文所提算法具有更好的性能。