We consider a problem from stock market modeling, precisely, choice of adequate distribution of modeling extremal behavior of stock market data. Generalized extreme value (GEV) distribution and generalized Pareto (GP)...We consider a problem from stock market modeling, precisely, choice of adequate distribution of modeling extremal behavior of stock market data. Generalized extreme value (GEV) distribution and generalized Pareto (GP) distribution are the classical distributions for this problem. However, from 2004, [1] and many other researchers have been empirically showing that generalized logistic (GL) distribution is a better model than GEV and GP distributions in modeling extreme movement of stock market data. In this paper, we show that these results are not accidental. We prove the theoretical importance of GL distribution in extreme value modeling. For proving this, we introduce a general multivariate limit theorem and deduce some important multivariate theorems in probability as special cases. By using the theorem, we derive a limit theorem in extreme value theory, where GL distribution plays central role instead of GEV distribution. The proof of this result is parallel to the proof of classical extremal types theorem, in the sense that, it possess important characteristic in classical extreme value theory, for e.g. distributional property, stability, convergence and multivariate extension etc.展开更多
Estimation for the parameters of the generalized logistic distribution (GLD) is obtained based on record statistics from a Bayesian and non-Bayesian approach. The Bayes estimators cannot be obtained in explicit forms....Estimation for the parameters of the generalized logistic distribution (GLD) is obtained based on record statistics from a Bayesian and non-Bayesian approach. The Bayes estimators cannot be obtained in explicit forms. So the Markov chain Monte Carlo (MCMC) algorithms are used for computing the Bayes estimates. Point estimation and confidence intervals based on maximum likelihood and the parametric bootstrap methods are proposed for estimating the unknown parameters. A numerical example has been analyzed for illustrative purposes. Comparisons are made between Bayesian and maximum likelihood estimators via Monte Carlo simulation.展开更多
文摘We consider a problem from stock market modeling, precisely, choice of adequate distribution of modeling extremal behavior of stock market data. Generalized extreme value (GEV) distribution and generalized Pareto (GP) distribution are the classical distributions for this problem. However, from 2004, [1] and many other researchers have been empirically showing that generalized logistic (GL) distribution is a better model than GEV and GP distributions in modeling extreme movement of stock market data. In this paper, we show that these results are not accidental. We prove the theoretical importance of GL distribution in extreme value modeling. For proving this, we introduce a general multivariate limit theorem and deduce some important multivariate theorems in probability as special cases. By using the theorem, we derive a limit theorem in extreme value theory, where GL distribution plays central role instead of GEV distribution. The proof of this result is parallel to the proof of classical extremal types theorem, in the sense that, it possess important characteristic in classical extreme value theory, for e.g. distributional property, stability, convergence and multivariate extension etc.
文摘Estimation for the parameters of the generalized logistic distribution (GLD) is obtained based on record statistics from a Bayesian and non-Bayesian approach. The Bayes estimators cannot be obtained in explicit forms. So the Markov chain Monte Carlo (MCMC) algorithms are used for computing the Bayes estimates. Point estimation and confidence intervals based on maximum likelihood and the parametric bootstrap methods are proposed for estimating the unknown parameters. A numerical example has been analyzed for illustrative purposes. Comparisons are made between Bayesian and maximum likelihood estimators via Monte Carlo simulation.