A generalized form of the error function, Gp(x)=pΓ(1/p)∫0xe−tpdt, which is directly associated with the gamma function, is evaluated for arbitrary real values of p>1and 0x≤+∞by employing a fast-converging power...A generalized form of the error function, Gp(x)=pΓ(1/p)∫0xe−tpdt, which is directly associated with the gamma function, is evaluated for arbitrary real values of p>1and 0x≤+∞by employing a fast-converging power series expansion developed in resolving the so-called Grandi’s paradox. Comparisons with accurate tabulated values for well-known cases such as the error function are presented using the expansions truncated at various orders.展开更多
In this paper,we offer a new sparse recovery strategy based on the generalized error function.The introduced penalty function involves both the shape and the scale parameters,making it extremely flexible.For both cons...In this paper,we offer a new sparse recovery strategy based on the generalized error function.The introduced penalty function involves both the shape and the scale parameters,making it extremely flexible.For both constrained and unconstrained models,the theoretical analysis results in terms of the null space property,the spherical section property and the restricted invertibility factor are established.The practical algorithms via both the iteratively reweighted■_(1)and the difference of convex functions algorithms are presented.Numerical experiments are carried out to demonstrate the benefits of the suggested approach in a variety of circumstances.Its practical application in magnetic resonance imaging(MRI)reconstruction is also investigated.展开更多
In this paper, the weighted Kolmogrov-Smirnov, Cramer von-Miss and the Anderson Darling test statistics are considered as goodness of fit tests for the generalized Rayleigh interval grouped data. An extensive simulati...In this paper, the weighted Kolmogrov-Smirnov, Cramer von-Miss and the Anderson Darling test statistics are considered as goodness of fit tests for the generalized Rayleigh interval grouped data. An extensive simulation process is conducted to evaluate their controlling of type 1 error and their power functions. Generally, the weighted Kolmogrov-Smirnov test statistics show a relatively better performance than both, the Cramer von-Miss and the Anderson Darling test statistics. For large sample values, the Anderson Darling test statistics cannot control type 1 error but for relatively small sample values it indicates a better performance than the Cramer von-Miss test statistics. Best selection of the test statistics and highlights for future studies are also explored.展开更多
In this paper, we consider the global error bound for the generalized complementarity problem (GCP) with analytic functions. Based on the new technique, we establish computable global error bound under milder conditio...In this paper, we consider the global error bound for the generalized complementarity problem (GCP) with analytic functions. Based on the new technique, we establish computable global error bound under milder conditions, which refines the previously known results.展开更多
文摘A generalized form of the error function, Gp(x)=pΓ(1/p)∫0xe−tpdt, which is directly associated with the gamma function, is evaluated for arbitrary real values of p>1and 0x≤+∞by employing a fast-converging power series expansion developed in resolving the so-called Grandi’s paradox. Comparisons with accurate tabulated values for well-known cases such as the error function are presented using the expansions truncated at various orders.
基金supported by the Zhejiang Provincial Natural Science Foundation of China under grant No.LQ21A010003.
文摘In this paper,we offer a new sparse recovery strategy based on the generalized error function.The introduced penalty function involves both the shape and the scale parameters,making it extremely flexible.For both constrained and unconstrained models,the theoretical analysis results in terms of the null space property,the spherical section property and the restricted invertibility factor are established.The practical algorithms via both the iteratively reweighted■_(1)and the difference of convex functions algorithms are presented.Numerical experiments are carried out to demonstrate the benefits of the suggested approach in a variety of circumstances.Its practical application in magnetic resonance imaging(MRI)reconstruction is also investigated.
文摘In this paper, the weighted Kolmogrov-Smirnov, Cramer von-Miss and the Anderson Darling test statistics are considered as goodness of fit tests for the generalized Rayleigh interval grouped data. An extensive simulation process is conducted to evaluate their controlling of type 1 error and their power functions. Generally, the weighted Kolmogrov-Smirnov test statistics show a relatively better performance than both, the Cramer von-Miss and the Anderson Darling test statistics. For large sample values, the Anderson Darling test statistics cannot control type 1 error but for relatively small sample values it indicates a better performance than the Cramer von-Miss test statistics. Best selection of the test statistics and highlights for future studies are also explored.
基金supported by National Natural Science Foundation of China (Nos. 11171180 and 11101303)Specialized Research Fund for the Doctoral Program of Chinese Higher Education (No. 20113705110002)Shandong Provincial Natural Science Foundation (Nos. ZR2010AL005 and ZR2011FL017)
文摘In this paper, we consider the global error bound for the generalized complementarity problem (GCP) with analytic functions. Based on the new technique, we establish computable global error bound under milder conditions, which refines the previously known results.