期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Foundation of the Unicentric Model of the Observable Universe—UNIMOUN
1
作者 Ahmad A. Hujeirat 《Journal of Modern Physics》 CAS 2023年第4期415-431,共17页
In view of the growing difficulties of ΛCDM-cosmologies to compete with recent highly accurate cosmological observations, I propose the alternative model: the Unicentric Model of the Observable UNiverse (UNIMOUN). Th... In view of the growing difficulties of ΛCDM-cosmologies to compete with recent highly accurate cosmological observations, I propose the alternative model: the Unicentric Model of the Observable UNiverse (UNIMOUN). The model relies on employing a new time-dependent -metric for the GR field equations, which enables reversible phase transitions between normal compressible fluids and incompressible quantum superfluids, necessary for studying the cosmic evolution of the observable universe. The main properties of UNIMOUN read: 1) The observable universe was born in a flat spacetime environment, which is a tiny fraction of our infinitely large and flat parent universe, 2) Our big bang (BB) happened to occur in our neighbourhood, thereby endowing the universe the observed homogeneity and isotropy, 3) The energy density in the universe is upper-bounded by the universal critical density , beyond which matter becomes purely incompressible, rendering formation of physical singulareties, and in particular black holes, impossible, 4) Big bangs are neither singular events nor invoked by external forces, but rather, they are common self-sustaining events in our parent universe, 5) The progenitors of BBs are created through the merger of cosmically dead and inactive neutron stars and/or through “supermassive black holes” that are currently observed at the centres of most massive galaxies, 6) The progenitors are made up of purely incompressible entropy-free superconducting gluon- quark superfluids with (SuSu-matter), which endows these giant objects measurable sizes, 7) Spacetimes embedding SuSu-matter are conformally flat. It is shown that UNIMOUN is capable of dealing with or providing answers to several fundamental open questions in astrophysics and cosmology without invoking inflation, dark matter or dark energy. 展开更多
关键词 general relativity: big bang Black Holes QSOS Neutron Stars QCD Condensed Matter INCOMPRESSIBILITY SUPERFLUIDITY Super-Conductivity
下载PDF
Hubble Tension versus the Cosmic Evolution of Hubble Parameter in the Unicentric Model of the Observable Universe
2
作者 Ahmad Hujeirat 《Journal of Modern Physics》 CAS 2023年第3期183-197,共15页
Recently, a unicentric model of the observable universe (UNIMOUN) was proposed. Accordingly, big bangs are common events in our infinitely large, flat, homogeneous and isotropic parent universe. Their progenitors are ... Recently, a unicentric model of the observable universe (UNIMOUN) was proposed. Accordingly, big bangs are common events in our infinitely large, flat, homogeneous and isotropic parent universe. Their progenitors are clusters of cosmically dead and massive neutron stars that merged after reaching the ultimate lowest quantum energy state, where the matter is in an incompressible superconducting gluon-quark superfluid state and zero-entropy, hence granting the resulting progenitors measurable sizes and immunity to collapsing into black holes. Our big bang happened to occur in our neighbourhood, thereby enduing the universe, the observed homogeneity and isotropy. As the enclosed mass of the progenitor was finite, the dynamically expanding curved spacetimes embedded the fireball started flattening to finally diffuse into the flat spacetime of the parent universe. By means of general relativistic numerical hydrodynamical calculations, we use the H-metric to follow the time-evolution of the spacetime embedding the progenitor during the hadronization and the immediately following epochs. Based thereon, we find that the kinetic energy of newly created normal matter increases with distance in a self-similar manner, imitating thereby outflows of nearly non-interacting particles. On cosmic time scales, this behaviour yields a Hubble parameter, H(t), which decreases slowly with the distance from the big bang event. Given the sensitivity of the data of the Cosmic Microwave Background (CMB) from Planck to the underlying cosmological model, we conclude that UNIMOUN is a viable alternative to ΛCMD-cosmologies. 展开更多
关键词 general relativity: big bang Black Holes QUASARS Neutron Stars Quantum Chromodynamics Condensed Matter INCOMPRESSIBILITY SUPERFLUIDITY Super-Conductivity
下载PDF
The Progenitor of the Big Bang and Its Connection to the Flatness and Acceleration of the Universe 被引量:1
3
作者 Ahmad A. Hujeirat 《Journal of Modern Physics》 CAS 2022年第11期1474-1498,共25页
It was argued that old and massive neutron stars end up as black objects that are made of purely incompressible superconducting gluon-quark superfluid matter (henceforth SuSu-objects). Based on theoretical investigati... It was argued that old and massive neutron stars end up as black objects that are made of purely incompressible superconducting gluon-quark superfluid matter (henceforth SuSu-objects). Based on theoretical investigations and numerical solving of the field equations with time-dependent spacetime topologies, I argue that a dense cluster of SuSu-objects at the background of flat spacetime that merged smoothly is a reliable candidate for the progenitor of the big bang. Here, we present and use a new time-dependent spacetime metric, which unifies the metrics of Minkowski, Schwarzschild, and Friedmann as well as a modified TOV-equation for modeling dynamical contractions of relativistic objects. Had the progenitor undergone an abrupt decay, a hadronizing front forms at its surface and starts propagating from outside-to-inside, thereby hadronizing its entire content and changing the topology of the embedding spacetime from a flat into a dynamically expanding curved one. For an observer located at the center of the progenitor, H<sub>0</sub>, the universe would be seen as isotropic and homogeneous, implying therefore that the last big bang event must have occurred in our neighborhood. For the curved spacetime re-converges into a flat one, whereas the outward-propagation topological front, which separates the enclosed curved spacetime from the exterior flat one, would appear spatially and temporally accelerating outwards. The here-presented scenario suggests possible solutions to the flatness problem, the origin of acceleration of the universe and the pronounced activities of high redshift QSOs. We anticipate that future observations by the James-Webb-Telescope to support our scenario when active QSOs with z >12 would be detected. 展开更多
关键词 general relativity: big bang Black Holes QSOS Neutron Stars QCD Condensed Matter SUPERFLUIDITY
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部