Curcumin, the medically active component from Curcuma Tonga (Turmeric), is widely used to treat inflammatory diseases. Protein interaction network (PIN) analysis was used to predict its mechanisms of molecular action....Curcumin, the medically active component from Curcuma Tonga (Turmeric), is widely used to treat inflammatory diseases. Protein interaction network (PIN) analysis was used to predict its mechanisms of molecular action. Targets of curcumin were obtained based on ChEMBL and STITCH databases. Protein protein interactions (PPIs) were extracted from the String database. The PIN of curcumin was constructed by Cytoscape and the function modules identified by gene ontology (GO) enrichment analysis based on molecular complex detection (MCODE). A PIN of curcumin with 482 nodes and 1688 interactions was constructed, which has scale-free, small world and modular properties. Based on analysis of these function modules, the mechanism of curcumin is proposed. Two modules were found to be intimately associated with inflammation. With function modules analysis, the anti-inflammatory effects of curcumin were related to SMAD, ERG and mediation by the TLR family. TLR9 may be a potential target of curcumin to treat inflammation. (C) 2015 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V.展开更多
In recent years,a large number of differentially expressed genes have been identified in human umbilical cord mesenchymal stem cell(hUMSC)transplants for the treatment of ischemic cerebral infarction.These genes are i...In recent years,a large number of differentially expressed genes have been identified in human umbilical cord mesenchymal stem cell(hUMSC)transplants for the treatment of ischemic cerebral infarction.These genes are involved in various biochemical processes,but the role of microRNAs(miRNAs)in this process is still unclear.From the Gene Expression Omnibus(GEO)database,we downloaded two microarray datasets for GSE78731(messenger RNA(mRNA)profile)and GSE97532(miRNA profile).The differentially expressed genes screened were compared between the hUMSC group and the middle cerebral artery occlusion group.Gene ontology enrichment and pathway enrichment analyses were subsequently conducted using the online Database for Annotation,Visualization,and Integrated Discovery.Identified genes were applied to perform weighted gene co-suppression analyses,to establish a weighted co-expression network model.Furthermore,the protein-protein interaction network for differentially expressed genes from turquoise modules was built using Cytoscape(version 3.40)and the most highly correlated subnetwork was extracted from the protein-protein interaction network using the MCODE plugin.The predicted target genes for differentially expressed miRNAs were also identified using the online database starBase v3.0.A total of 3698 differentially expressed genes were identified.Gene ontology analysis demonstrated that differentially expressed genes that are related to hUMSC treatment of ischemic cerebral infarction are involved in endocytosis and inflammatory responses.We identified 12 differentially expressed miRNAs in middle cerebral artery occlusion rats after hUMSC treatment,and these differentially expressed miRNAs were mainly involved in signaling in inflammatory pathways,such as in the regulation of neutrophil migration.In conclusion,we have identified a number of differentially expressed genes and differentially expressed mRNAs,miRNA-mRNAs,and signaling pathways involved in the hUMSC treatment of ischemic cerebral infarction.Bioinformatics and 展开更多
基金supported by grants from the National Natural Science Foundation of China(Grant No.81403103)Chinese Medicine Resources(Sichuan Province)Youth Science and Technology Innovation Team(Grant No.2015TD0028)+1 种基金Sichuan Province Science and Technology Support Plan(Grant No.2014SZ0156)Sichuan Province Education Department Project(Grant No.2013SZB0781)
文摘Curcumin, the medically active component from Curcuma Tonga (Turmeric), is widely used to treat inflammatory diseases. Protein interaction network (PIN) analysis was used to predict its mechanisms of molecular action. Targets of curcumin were obtained based on ChEMBL and STITCH databases. Protein protein interactions (PPIs) were extracted from the String database. The PIN of curcumin was constructed by Cytoscape and the function modules identified by gene ontology (GO) enrichment analysis based on molecular complex detection (MCODE). A PIN of curcumin with 482 nodes and 1688 interactions was constructed, which has scale-free, small world and modular properties. Based on analysis of these function modules, the mechanism of curcumin is proposed. Two modules were found to be intimately associated with inflammation. With function modules analysis, the anti-inflammatory effects of curcumin were related to SMAD, ERG and mediation by the TLR family. TLR9 may be a potential target of curcumin to treat inflammation. (C) 2015 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V.
基金supported by the National Key Research&Development Program of China,No.2016YFC1301600Program for Jilin University Science and Technology Innovation Team,No.2017TD-12(both to YY)
文摘In recent years,a large number of differentially expressed genes have been identified in human umbilical cord mesenchymal stem cell(hUMSC)transplants for the treatment of ischemic cerebral infarction.These genes are involved in various biochemical processes,but the role of microRNAs(miRNAs)in this process is still unclear.From the Gene Expression Omnibus(GEO)database,we downloaded two microarray datasets for GSE78731(messenger RNA(mRNA)profile)and GSE97532(miRNA profile).The differentially expressed genes screened were compared between the hUMSC group and the middle cerebral artery occlusion group.Gene ontology enrichment and pathway enrichment analyses were subsequently conducted using the online Database for Annotation,Visualization,and Integrated Discovery.Identified genes were applied to perform weighted gene co-suppression analyses,to establish a weighted co-expression network model.Furthermore,the protein-protein interaction network for differentially expressed genes from turquoise modules was built using Cytoscape(version 3.40)and the most highly correlated subnetwork was extracted from the protein-protein interaction network using the MCODE plugin.The predicted target genes for differentially expressed miRNAs were also identified using the online database starBase v3.0.A total of 3698 differentially expressed genes were identified.Gene ontology analysis demonstrated that differentially expressed genes that are related to hUMSC treatment of ischemic cerebral infarction are involved in endocytosis and inflammatory responses.We identified 12 differentially expressed miRNAs in middle cerebral artery occlusion rats after hUMSC treatment,and these differentially expressed miRNAs were mainly involved in signaling in inflammatory pathways,such as in the regulation of neutrophil migration.In conclusion,we have identified a number of differentially expressed genes and differentially expressed mRNAs,miRNA-mRNAs,and signaling pathways involved in the hUMSC treatment of ischemic cerebral infarction.Bioinformatics and