Yellow maize contains high levels of β-carotene(βC), making it an important crop for combating vitamin A deficiency through biofortification. In this study, nine maize inbred lines were selected at random from 31 pr...Yellow maize contains high levels of β-carotene(βC), making it an important crop for combating vitamin A deficiency through biofortification. In this study, nine maize inbred lines were selected at random from 31 provitamin A(PVA) maize inbred lines and crossed in a partial diallel mating design to develop 36 crosses. The crosses were evaluated in the field in two locations(Samaru and Kerawa) and their seed carotenoid content were determined by high-performance liquid chromatography. The modes of gene action, heritability, and correlations between agronomic traits and carotenoid content were estimated. Additive genetic variances(σ~2a) were lower than non-additive genetic variances(σ~2d) for all the carotenoids, plant height(PH), and grain yield(GY), suggesting a preponderance of non-additive gene action. Broad-sense heritability(H^2) was high(H^2> 60%) for zeaxanthin,days to anthesis, and PH, moderate(30% < H^2< 60%) for lutein and GY, and low(H^2< 30%)for alpha carotene, beta cryptoxanthin, βC, and PVA. Genetic advance as a percentage of mean, considered with H^2, also suggests a preponderance of non-additive gene action for PVA carotenoids. Hybrid variety development is thus an appropriate approach to improving grain yield and PVA. GY showed no significant genotypic correlations with carotenoid content, suggesting that these traits can be improved concurrently. Thus, there is ample scope for improvement of PVA and GY in the sample of tropical-adapted maize.展开更多
The experiment was conducted at the experimental field of Olericulture Division, Horticulture Research Centre (HRC), Bangladesh Agricultural Research Institute (BARI), Gazipur, Bangladesh during the winter season of 2...The experiment was conducted at the experimental field of Olericulture Division, Horticulture Research Centre (HRC), Bangladesh Agricultural Research Institute (BARI), Gazipur, Bangladesh during the winter season of 2018-2019 to study the genetic architecture of yield in a seven parent half diallel cross of bottle gourd. The values of mean square for GCA (general combining ability) and SCA (specific combining ability) were highly significant which suggested the presence of both additive and non-additive genetic variance in the population. But the higher magnitude of GCA compared to SCA indicated predominance of additive genetic variance. In most of the cases, the cross between poor and poor parents showed positive SCA effect for fruit yield, which indicated the higher yield. The estimates of significant positive better parent heterosis ranged from 6.27 to 49.72 percent. Analysis of genetic components of variation suggested that additive components were more important in the inheritance of fruit yield. This character was observed being controlled by two to three pairs of genes or groups of genes. Narrow sense heritability was 23 percent indicating probability of selection in generations. The graphical analysis also indicated wide genetic diversity among the parents.展开更多
Quantitative trait loci(QTLs) of grain traits were detected to provide theoretical basis for fine mapping and molecular marker-assisted breeding of grain traits in japonica rice.Using an F2 population including 200 ...Quantitative trait loci(QTLs) of grain traits were detected to provide theoretical basis for fine mapping and molecular marker-assisted breeding of grain traits in japonica rice.Using an F2 population including 200 individuals derived from a cross combination between two japonica rice DL115 with large grain and XL005 with small grain,the grain length,grain width,grain thickness,ratio of grain length to width and 1 000-grain weight were evaluated in Beijing;and the quantitative trait loci for above five grain traits were identified by composite interval mapping using SSR markers.The results showed that the five grain traits exhibited a normal continuous distribution in F2 population,indicating they were quantitative traits controlled by multiple genes.A total of 16 QTLs conferring the five grain traits were detected on chromosomes 2,3,5 and 12,respectively.Eight QTLs,namely qGL3a,qGW2,qGW5,qGT2,qRLW2,qRLW3,qGWT2 and qGWT3,were major QTLs and explained 15.42,40.89,13.54,33.43,13.82,13.61,12.51 and 10.1% of the observed phenotypic variance,respectively.Among them,qGW2,qGT2,qRLW2 and qGWT2 were mapped in same interval RM12776-RM324 on chromosome 2.The marker interval RM12776-RM324 on chromosome 2 was common marker intervals of four major QTLs,and the two SSR markers RM12776 and RM324 would be used in molecular markerassisted breeding in japonica rice.The modes of gene action were mainly additive and partial dominance.Four QTLs' alleles were derived from small grain parent XL005,and other 12 QTLs' alleles were derived from large grain parent DL115.The alleles from larger parent were showed significant effects to grain length,grain width,grain thickness and 1 000-grain weight.展开更多
Information on mechanisms and inheritance of resistance is critical to plan an effective strategy to breed for resistance to insect pests. Therefore, we evaluated a diverse array of chickpea genotypes (eight desi and ...Information on mechanisms and inheritance of resistance is critical to plan an effective strategy to breed for resistance to insect pests. Therefore, we evaluated a diverse array of chickpea genotypes (eight desi and one kabuli) with varying levels of resistance to the pod borer, Helicoverpa armigera to gain an understanding of the nature of gene action and possible maternal effects. The test genotypes were crossed in all possible combinations for a full diallel. The 72 F1s (36 direct and 36 reciprocal crosses) along with the parents were evaluated for resistance to H. armigera under field conditions, and for antibiosis mechanism of resistance (larval survival and larval weight gain) by using detached leaf assay under laboratory conditions, and grain yield under un-protected conditions in the field. Additive gene action governed the inheritance of resistance to H. armigera, while non-additive type of gene action was predominant for inheritance of antibiosis component of resistance (larval survival and larval weight) and grain yield. Greater magnitude of σ2 A(17.39 and 1.42) than σ2 D (3.93 and 1.21) indicated the preponderance of σ2 Ain inheritance of resistance to pod borer, H. armigera under laboratory and field conditions, respectively. There were no maternal effects for inheritance of resistance to pod borer and grain yield. Lines with significant gca effects for pod borer damage and grain yield were identified for further use in the resistance breeding program. The implications of the inheritance pattern of pod borer resistance and grain yield are discussed in the context of strategies to enhance pod borer resistance and grain yield in chickpea.展开更多
基金the Institutefor Agricultural Research, Ahmadu Bello University (IAR/ABU) Samaru, Nigeria, for the funding support provided for this study
文摘Yellow maize contains high levels of β-carotene(βC), making it an important crop for combating vitamin A deficiency through biofortification. In this study, nine maize inbred lines were selected at random from 31 provitamin A(PVA) maize inbred lines and crossed in a partial diallel mating design to develop 36 crosses. The crosses were evaluated in the field in two locations(Samaru and Kerawa) and their seed carotenoid content were determined by high-performance liquid chromatography. The modes of gene action, heritability, and correlations between agronomic traits and carotenoid content were estimated. Additive genetic variances(σ~2a) were lower than non-additive genetic variances(σ~2d) for all the carotenoids, plant height(PH), and grain yield(GY), suggesting a preponderance of non-additive gene action. Broad-sense heritability(H^2) was high(H^2> 60%) for zeaxanthin,days to anthesis, and PH, moderate(30% < H^2< 60%) for lutein and GY, and low(H^2< 30%)for alpha carotene, beta cryptoxanthin, βC, and PVA. Genetic advance as a percentage of mean, considered with H^2, also suggests a preponderance of non-additive gene action for PVA carotenoids. Hybrid variety development is thus an appropriate approach to improving grain yield and PVA. GY showed no significant genotypic correlations with carotenoid content, suggesting that these traits can be improved concurrently. Thus, there is ample scope for improvement of PVA and GY in the sample of tropical-adapted maize.
文摘The experiment was conducted at the experimental field of Olericulture Division, Horticulture Research Centre (HRC), Bangladesh Agricultural Research Institute (BARI), Gazipur, Bangladesh during the winter season of 2018-2019 to study the genetic architecture of yield in a seven parent half diallel cross of bottle gourd. The values of mean square for GCA (general combining ability) and SCA (specific combining ability) were highly significant which suggested the presence of both additive and non-additive genetic variance in the population. But the higher magnitude of GCA compared to SCA indicated predominance of additive genetic variance. In most of the cases, the cross between poor and poor parents showed positive SCA effect for fruit yield, which indicated the higher yield. The estimates of significant positive better parent heterosis ranged from 6.27 to 49.72 percent. Analysis of genetic components of variation suggested that additive components were more important in the inheritance of fruit yield. This character was observed being controlled by two to three pairs of genes or groups of genes. Narrow sense heritability was 23 percent indicating probability of selection in generations. The graphical analysis also indicated wide genetic diversity among the parents.
基金supported by the National Key Technologies R&D Program of China (2006BAD13B01)the National Basic Research Program of China(2005DKA21001-01)the National Crop Resources Protect Program of China [NB06-070401(22-27)-01]
文摘Quantitative trait loci(QTLs) of grain traits were detected to provide theoretical basis for fine mapping and molecular marker-assisted breeding of grain traits in japonica rice.Using an F2 population including 200 individuals derived from a cross combination between two japonica rice DL115 with large grain and XL005 with small grain,the grain length,grain width,grain thickness,ratio of grain length to width and 1 000-grain weight were evaluated in Beijing;and the quantitative trait loci for above five grain traits were identified by composite interval mapping using SSR markers.The results showed that the five grain traits exhibited a normal continuous distribution in F2 population,indicating they were quantitative traits controlled by multiple genes.A total of 16 QTLs conferring the five grain traits were detected on chromosomes 2,3,5 and 12,respectively.Eight QTLs,namely qGL3a,qGW2,qGW5,qGT2,qRLW2,qRLW3,qGWT2 and qGWT3,were major QTLs and explained 15.42,40.89,13.54,33.43,13.82,13.61,12.51 and 10.1% of the observed phenotypic variance,respectively.Among them,qGW2,qGT2,qRLW2 and qGWT2 were mapped in same interval RM12776-RM324 on chromosome 2.The marker interval RM12776-RM324 on chromosome 2 was common marker intervals of four major QTLs,and the two SSR markers RM12776 and RM324 would be used in molecular markerassisted breeding in japonica rice.The modes of gene action were mainly additive and partial dominance.Four QTLs' alleles were derived from small grain parent XL005,and other 12 QTLs' alleles were derived from large grain parent DL115.The alleles from larger parent were showed significant effects to grain length,grain width,grain thickness and 1 000-grain weight.
文摘Information on mechanisms and inheritance of resistance is critical to plan an effective strategy to breed for resistance to insect pests. Therefore, we evaluated a diverse array of chickpea genotypes (eight desi and one kabuli) with varying levels of resistance to the pod borer, Helicoverpa armigera to gain an understanding of the nature of gene action and possible maternal effects. The test genotypes were crossed in all possible combinations for a full diallel. The 72 F1s (36 direct and 36 reciprocal crosses) along with the parents were evaluated for resistance to H. armigera under field conditions, and for antibiosis mechanism of resistance (larval survival and larval weight gain) by using detached leaf assay under laboratory conditions, and grain yield under un-protected conditions in the field. Additive gene action governed the inheritance of resistance to H. armigera, while non-additive type of gene action was predominant for inheritance of antibiosis component of resistance (larval survival and larval weight) and grain yield. Greater magnitude of σ2 A(17.39 and 1.42) than σ2 D (3.93 and 1.21) indicated the preponderance of σ2 Ain inheritance of resistance to pod borer, H. armigera under laboratory and field conditions, respectively. There were no maternal effects for inheritance of resistance to pod borer and grain yield. Lines with significant gca effects for pod borer damage and grain yield were identified for further use in the resistance breeding program. The implications of the inheritance pattern of pod borer resistance and grain yield are discussed in the context of strategies to enhance pod borer resistance and grain yield in chickpea.