We have investigated the effect of cohesion and drag models on the bed hydrodynamics of Geldart A particles based on the two-fluid (TF) model. For a high gas velocity U0 = 0.03 m/s, we found a transition from the ho...We have investigated the effect of cohesion and drag models on the bed hydrodynamics of Geldart A particles based on the two-fluid (TF) model. For a high gas velocity U0 = 0.03 m/s, we found a transition from the homogeneous fluidization to bubbling fluidization with an increase of the coefficient C1, which is used to account for the contribution of cohesion to the excess compressibility. Thus cohesion can play a role in the bed expansion of Geldart A particles. Apart from cohesion, we have also investigated the influence of the drag models. When using the Wen and Yu drag correlation with an exponent n = 4.65, we find an under-prediction of the bed expansion at low gas velocities (U0 = 0.009 m/s). When using a larger exponent (n = 9.6), as reported in experimental studies of gas-fluidization, a much better agreement with the experimental bed expansion is obtained. These findings suggest that at low gas velocity, a scale-down of the commonly used drag model is required. On the other hand, a scale-up of the commonly used drag model is necessary at high gas velocity (U0 = 0.2 and 0.06 m/s). We therefore conclude that scaling the drag force represent only an ad hoc way of repairing the deficiencies of the TF model, and that a far more detailed study is required into the origin of the failure of the TF model for simulating fluidized beds of fine powders.展开更多
The fiuidization behavior of Geldart A particles in a gas-solid micro-fluidized bed was investigated by Eulerian-Eulerian numerical simulation. The commonly used Gidaspow drag model was tested first. The simulation sh...The fiuidization behavior of Geldart A particles in a gas-solid micro-fluidized bed was investigated by Eulerian-Eulerian numerical simulation. The commonly used Gidaspow drag model was tested first. The simulation showed that the predicted minimum bubbling velocities were significantly lower than the experimental data even when an extremely fine grid size (of approximately one particle diameter) was used. The modified Gibilaro drag model was therefore tested next. The predicted minimum bubbling velocity and bed voidage were in reasonable agreement with the experimental data available in literature. The experimentally observed regime transition phenomena from bubbling to slugging were also reproduced successfully in the simulations. Parametric studies indicated that the solid-wall boundary conditions had a significant impact on the predicted gas and solid flow behavior.展开更多
We carried out experiments to explore and characterize the gas-solid flow dynamics of Geldart group B particles in a dense circulating fluidized bed riser. By reducing the pressure drop across the solid control valve ...We carried out experiments to explore and characterize the gas-solid flow dynamics of Geldart group B particles in a dense circulating fluidized bed riser. By reducing the pressure drop across the solid control valve and increasing the solid inventory in the storage tank, a high solid circulation rate and a solid holdup above 0.075 throughout the riser were simultaneously achieved. At a solid-to-gas mass flux ratio of approximately 105, flow transitioned from fast fluidization to a dense suspension upflow. In the axial direction of the riser, solid holdup had an exponential profile, increasing with increasing solid circulation rate and Jot decreasing superficial gas velocity. From the riser's center to its wall, the solid holdup increased markedly, exhibiting a steep parabolic profile. Increasing the solid circulation rate increased the radial non-uniformity of the solid concentration, while increasing the superficial gas velocity had the opposite effect, In our dense circulating fluidized bed riser, Geldart group B particles had similar slip characteristics to Geldart group A particles,展开更多
The homogeneous/particulate fluidization flow regime is particularly suitable for handling the various gas–solid contact processes encountered in the chemical and energy industry.This work aimed to extend such a regi...The homogeneous/particulate fluidization flow regime is particularly suitable for handling the various gas–solid contact processes encountered in the chemical and energy industry.This work aimed to extend such a regime of Geldart-A particles by exerting the axial uniform and steady magnetic field.Under the action of the magnetic field,the overall homogeneous fluidization regime of Geldart-A magnetizable particles became composed of two parts:inherent homogeneous fluidization and newly-created magnetic stabilization.Since the former remained almost unchanged whereas the latter became broader as the magnetic field intensity increased,the overall homogeneous fluidization regime could be extended remarkably.As for Geldart-A nonmagnetizable particles,certain amount of magnetizable particles had to be premixed to transmit the magnetic stabilization.Among others,the mere addition of magnetizable particles could broaden the homogeneous fluidization regime.The added content of magnetizable particles had an optimal value with smaller/lighter ones working better.The added magnetizable particles might raise the ratio between the interparticle force and the particle gravity.After the magnetic field was exerted,the homogeneous fluidization regime was further expanded due to the formation of magnetic stabilization flow regime.The more the added magnetizable particles,the better the magnetic performance and the broader the overall homogeneous fluidization regime.Smaller/lighter magnetizable particles were preferred to maximize the magnetic performance and extend the overall homogeneous fluidization regime.This phenomenon could be ascribed to that the added magnetizable particles themselves became more Geldart-A than-B type as their density or size decreased.展开更多
Gas–solid separation fluidized bed is a typical method for coal separation without water utilization.Geldart A particles is also considered as the ideal dense medium to strengthen separation efficiency.Fluidization s...Gas–solid separation fluidized bed is a typical method for coal separation without water utilization.Geldart A particles is also considered as the ideal dense medium to strengthen separation efficiency.Fluidization stability reflects the bed pressure fluctuations and the distribution of bubble and emulsion phases,affecting the separation performance.And the main frequency of pressure fluctuations can directly reflect the degree of pressure fluctuations.Therefore,the detailed fluidization stability is analyzed combined the method of standard deviation of pressure fluctuations,power spectral density,etc.,for Geldart A particles.The results showed that maintaining an appropriate gas velocity resulted in an average bed pressure of around 2000 Pa.The main frequency is mainly concentrated around 1–1.5 Hz.Finally,a prediction model of the main frequency of pressure fluctuations is established,and the error can be controlled within±0.15.The investigation further proved the stable fluidization of Geldart A particles and provides a method for predicting the main frequency of pressure fluctuations in the gas–solid separation fluidized bed.展开更多
In gas fluidization processes involving different types of particles,the mixing or segregation behavior of the solid mixture is crucial to the overall outcome of the process.This study develops a model to predict the ...In gas fluidization processes involving different types of particles,the mixing or segregation behavior of the solid mixture is crucial to the overall outcome of the process.This study develops a model to predict the segregation directions of binary mixtures of Geldart B particles with density and size differences in bubbling fluidized beds.The proposed model was established by combining the particle segregation model,a previous particle segregation model,with a derived bed voidage equation of the bubbling fluidization based on the two-phase theory.The model was then analyzed with different function graphs of the model equations under various conditions.The results indicated that an increase in gas velocity or volume fraction of larger particles would strengthen size segregation,causing the larger and less dense components to descend.To validate the model,42 sets of data collected from 6 independent literature sources were compared with the predictions of the model.When the gas velocities were below 3.2 times the minimum gas velocity,the predictions were consistent with experimental results.This study has shed new light on the mechanisms of particle segregation in binary fluidized systems and provides a theoretical foundation for designing and manipulating gas-solid fluidized reactors.展开更多
Pressurized fluidized beds have been developed in quite a few industrial applications because of intensified heat and mass transfer and chemical reaction.The bubble behaviors under elevated pressure,strongly influenci...Pressurized fluidized beds have been developed in quite a few industrial applications because of intensified heat and mass transfer and chemical reaction.The bubble behaviors under elevated pressure,strongly influencing the fluidization and reaction conversion of the whole system,are of great research significance.In this work,the bubble behaviors of Geldart B particle in a pseudo two-dimensional(2D)pressurized fluidized bed were experimentally studied based on digital image analysis technique.The effects of pressure and fluidization gas velocity on the general bubble behaviors(i.e.,size,shape and spatial distribution)and the dynamic characteristics,such as the time-evolution of voidage distribution and local flow regimes,were comprehensively investigated.Results show that increasing pressure re-duces the stability of bubbles and facilitates gas passing through the emulsion phase,resulting in the"smoother"fluidization state with smaller bubbles and declined bubble fraction and standard deviation.The equivalent bubble diameter and bubble aspect ratio increase with the increasing gas velocity while decrease as pressure rises.The elevated pressure reduces bubbles extension in the vertical direction,prohibits the"short pass"of fluidization gas in large oblong bubbles/slugs and benefits the gas-solid interaction.The flow regimes variation with gas velocity is affected by the elevated pressure,and demonstrates different features in different local positions of the bed.展开更多
The fluidization state in the circulating fluidized bed(CFB)boiler is crucial to its stable and safe operation.However,up to now,the research field has not reached unanimity on whether the fluidization regime that the...The fluidization state in the circulating fluidized bed(CFB)boiler is crucial to its stable and safe operation.However,up to now,the research field has not reached unanimity on whether the fluidization regime that the upper furnace of the boiler operates in is the fast fluidization or pneumatic transport.To this end,this paper reviewed relevant research on the transition between the fast fluidization and pneumatic transport of Geldart group B particles,including the flow characteristics of the fast fluidization,the transition condition between the fast fluidization and pneumatic transport,the determination methods of the transport velocity utr and saturation carrying capacity G_(s)* and the influencing factors on these two parameters.Previous research findings can provide certain guidelines for the design and optimization of the CFB boiler,and result in plenty of prediction correlations for utr and G_(s)*.Nonetheless,owing to insufficient data available on Geldart group B particles,especially the ones obtained under high temperature or pressure conditions and in large-scale CFB apparatuses,the existing correlations are not well suited for the prediction of u_(tr) and G_(s)* of Geldart group B particles.Thus,further efforts are urgently demanded on the fast fluidization transition of Geldart group B particles.展开更多
A three-dimensional(3D) fast fluidized bed with the riser of 3.0 m in height and 0.1 m in inner diameter was established to experimentally study the cluster behaviors of Geldart B particles. Five kinds of quartz sand ...A three-dimensional(3D) fast fluidized bed with the riser of 3.0 m in height and 0.1 m in inner diameter was established to experimentally study the cluster behaviors of Geldart B particles. Five kinds of quartz sand particles(dp= 0.100, 0.139, 0.177, 0.250 and 0.375 mm and ρp= 2480 kg·m^(-3)) were respectively investigated, with the total mass of the bed material kept as 10 kg. The superficial gas velocity in the riser ranges from 2.486 to 5.594 m·s^(-1) and the solid mass flux alters from 30 to 70 kg·((m^(-2)·s))^(-1). Cluster characteristics and evolutionary processes in the different positions of the riser were captured by the cluster visualization systems and analyzed by the self-developed binary image processing. The results found four typical cluster structures in the riser,i.e., the macro stripe-shaped cluster, saddle-shaped cluster, U-shaped cluster and the micro cluster. The increasing superficial gas velocity and particle sizes result in the increasing average cluster size and the decreasing cluster time fraction, while the solid mass flux in the riser have the reverse influences on the cluster size and time fraction. Additionally, clusters in the upper region of the riser often have the larger size and time fraction than that in the lower region. All these effects of operating conditions on clusters become less obvious when particle size is less than 0.100 mm.展开更多
Magnetic particles can be uniformly fluidized by coupling the gas flow with an externally imposed magnetic field. Interparticle forces generated by the magnetic field cause aggregation of the particles in chain-like s...Magnetic particles can be uniformly fluidized by coupling the gas flow with an externally imposed magnetic field. Interparticle forces generated by the magnetic field cause aggregation of the particles in chain-like structures preferentially oriented along the magnetic field lines. In the present paper, we study the implications of the formation of these special types of aggregates on the empirical Richardson-Zaki (RZ) equation, originally proposed to describe the expansion of fluidized beds of non-aggregated particles. We have addressed two important issues, namely the flow regime, which is a function of the size of the aggregates, and the effect of shape and orientation of the chain-like aggregates with respect to gas flow on fluid drag. We propose a modified RZ equation (MRZE) in which the velocity scale, given by the terminal settling velocity of the individual aggregates, and the RZ exponent are predetermined as a function of the chain length. The chain length depends on the ratio of the magnetic energy to gravitational energy, and is estimated from the magnetic field intensity, and particle magnetization, size and density. Predictions of the MRZE are successfully compared with published results in the literature on the expansion of magnetic particles in the presence of externally applied magnetic fields.展开更多
The incipient condition of hang-up for three Geldart-D powders has been experimentally studied in a 21 m long standpipe hopper system. Experimental results show that the pressure gradient for hang-up to occur is indep...The incipient condition of hang-up for three Geldart-D powders has been experimentally studied in a 21 m long standpipe hopper system. Experimental results show that the pressure gradient for hang-up to occur is independent of the materials height in the hopper and the diameter of orifice and equals to (dpw/dl)s, which can be predicted by Eq. (7). While the corresponding gas velocity in the standpipe equals to the incipient fluidized velocity of particles at the high pressure and can be predicted by Kwauk's equation.展开更多
A computational study was carried out on bubble dynamic behaviors and bubble size distributions in a pressurized lab-scale gas-solid fluidized bed of Geldart A particles.High-resolution 3-D numerical simulations were ...A computational study was carried out on bubble dynamic behaviors and bubble size distributions in a pressurized lab-scale gas-solid fluidized bed of Geldart A particles.High-resolution 3-D numerical simulations were performed using the two-fluid model based on the kinetic theory of granular flow.A finegrid,which is in the range of 3–4 particle diameters,was utilized in order to capture bubble structures explicitly without breaking down the continuum assumption for the solid phase.A novel bubble tracking scheme was developed in combination with a 3-D detection and tracking algorithm(MS3 DATA)and applied to detect the bubble statistics,such as bubble size,location in each time frame and relative position between two adjacent time frames,from numerical simulations.The spatial coordinates and corresponding void fraction data were sampled at 100 Hz for data analyzing.The bubble coalescence/break-up frequencies and the daughter bubble size distribution were evaluated by using the new bubble tracking algorithm.The results showed that the bubble size distributed non-uniformly over cross-sections in the bed.The equilibrium bubble diameter due to bubble break-up and coalescence dynamics can be obtained,and the bubble rise velocity follows Davidson’s correlation closely.Good agreements were obtained between the computed results and that predicted by using the bubble break-up model proposed in our previous work.The computational bubble tracking method showed the potential of analyzing bubble motions and the coalescence and break-up characteristics based on time series data sets of void fraction maps obtained numerically and experimentally.展开更多
文摘We have investigated the effect of cohesion and drag models on the bed hydrodynamics of Geldart A particles based on the two-fluid (TF) model. For a high gas velocity U0 = 0.03 m/s, we found a transition from the homogeneous fluidization to bubbling fluidization with an increase of the coefficient C1, which is used to account for the contribution of cohesion to the excess compressibility. Thus cohesion can play a role in the bed expansion of Geldart A particles. Apart from cohesion, we have also investigated the influence of the drag models. When using the Wen and Yu drag correlation with an exponent n = 4.65, we find an under-prediction of the bed expansion at low gas velocities (U0 = 0.009 m/s). When using a larger exponent (n = 9.6), as reported in experimental studies of gas-fluidization, a much better agreement with the experimental bed expansion is obtained. These findings suggest that at low gas velocity, a scale-down of the commonly used drag model is required. On the other hand, a scale-up of the commonly used drag model is necessary at high gas velocity (U0 = 0.2 and 0.06 m/s). We therefore conclude that scaling the drag force represent only an ad hoc way of repairing the deficiencies of the TF model, and that a far more detailed study is required into the origin of the failure of the TF model for simulating fluidized beds of fine powders.
基金financial support from the Ministry of Science and Technology of China with Grant No.2011YQ12003909the ongoing support through the startup fund awarded to Xiaoxing Liu from the "Hundred Talents Program" of the Institute of Process Engineering,Chinese Academy of Sciences
文摘The fiuidization behavior of Geldart A particles in a gas-solid micro-fluidized bed was investigated by Eulerian-Eulerian numerical simulation. The commonly used Gidaspow drag model was tested first. The simulation showed that the predicted minimum bubbling velocities were significantly lower than the experimental data even when an extremely fine grid size (of approximately one particle diameter) was used. The modified Gibilaro drag model was therefore tested next. The predicted minimum bubbling velocity and bed voidage were in reasonable agreement with the experimental data available in literature. The experimentally observed regime transition phenomena from bubbling to slugging were also reproduced successfully in the simulations. Parametric studies indicated that the solid-wall boundary conditions had a significant impact on the predicted gas and solid flow behavior.
基金We acknowledge support from the National High Technology Research and Development Program of China (2012AA06A115), National Natural Science Foundation of China (51476058, 91434120), and Fundamental Research Funds for the Central Universities (2014MS13).
文摘We carried out experiments to explore and characterize the gas-solid flow dynamics of Geldart group B particles in a dense circulating fluidized bed riser. By reducing the pressure drop across the solid control valve and increasing the solid inventory in the storage tank, a high solid circulation rate and a solid holdup above 0.075 throughout the riser were simultaneously achieved. At a solid-to-gas mass flux ratio of approximately 105, flow transitioned from fast fluidization to a dense suspension upflow. In the axial direction of the riser, solid holdup had an exponential profile, increasing with increasing solid circulation rate and Jot decreasing superficial gas velocity. From the riser's center to its wall, the solid holdup increased markedly, exhibiting a steep parabolic profile. Increasing the solid circulation rate increased the radial non-uniformity of the solid concentration, while increasing the superficial gas velocity had the opposite effect, In our dense circulating fluidized bed riser, Geldart group B particles had similar slip characteristics to Geldart group A particles,
基金supported by Shandong Provincial Natural Science Foundation (ZR2023MB038)National Natural Science Foundation of China (21808232 and 21978143)Financial support from the Qingdao University of Science and Technology
文摘The homogeneous/particulate fluidization flow regime is particularly suitable for handling the various gas–solid contact processes encountered in the chemical and energy industry.This work aimed to extend such a regime of Geldart-A particles by exerting the axial uniform and steady magnetic field.Under the action of the magnetic field,the overall homogeneous fluidization regime of Geldart-A magnetizable particles became composed of two parts:inherent homogeneous fluidization and newly-created magnetic stabilization.Since the former remained almost unchanged whereas the latter became broader as the magnetic field intensity increased,the overall homogeneous fluidization regime could be extended remarkably.As for Geldart-A nonmagnetizable particles,certain amount of magnetizable particles had to be premixed to transmit the magnetic stabilization.Among others,the mere addition of magnetizable particles could broaden the homogeneous fluidization regime.The added content of magnetizable particles had an optimal value with smaller/lighter ones working better.The added magnetizable particles might raise the ratio between the interparticle force and the particle gravity.After the magnetic field was exerted,the homogeneous fluidization regime was further expanded due to the formation of magnetic stabilization flow regime.The more the added magnetizable particles,the better the magnetic performance and the broader the overall homogeneous fluidization regime.Smaller/lighter magnetizable particles were preferred to maximize the magnetic performance and extend the overall homogeneous fluidization regime.This phenomenon could be ascribed to that the added magnetizable particles themselves became more Geldart-A than-B type as their density or size decreased.
基金National Natural Science Foundation of China(grant Nos.52220105008,52261135540)China National Funds for Distinguished Young Scientists(grant No.52125403)+1 种基金the Postgraduate Research&Practice Innovation Program of Jiangsu Province(grant No.SJCX23_1302)the Graduate Innovation Program of China University of Mining and Technology(grant No.2023WLJCRCZL081).
文摘Gas–solid separation fluidized bed is a typical method for coal separation without water utilization.Geldart A particles is also considered as the ideal dense medium to strengthen separation efficiency.Fluidization stability reflects the bed pressure fluctuations and the distribution of bubble and emulsion phases,affecting the separation performance.And the main frequency of pressure fluctuations can directly reflect the degree of pressure fluctuations.Therefore,the detailed fluidization stability is analyzed combined the method of standard deviation of pressure fluctuations,power spectral density,etc.,for Geldart A particles.The results showed that maintaining an appropriate gas velocity resulted in an average bed pressure of around 2000 Pa.The main frequency is mainly concentrated around 1–1.5 Hz.Finally,a prediction model of the main frequency of pressure fluctuations is established,and the error can be controlled within±0.15.The investigation further proved the stable fluidization of Geldart A particles and provides a method for predicting the main frequency of pressure fluctuations in the gas–solid separation fluidized bed.
基金the National Natural Science Foundation of China(grant No.52274275)the Graduate Research and Innovation Projects of Jiangsu Province(grant No.KYCX22_2640)the Graduate Innovation Program of China University of Mining and Technology(grant No.2022WLKXJ065).
文摘In gas fluidization processes involving different types of particles,the mixing or segregation behavior of the solid mixture is crucial to the overall outcome of the process.This study develops a model to predict the segregation directions of binary mixtures of Geldart B particles with density and size differences in bubbling fluidized beds.The proposed model was established by combining the particle segregation model,a previous particle segregation model,with a derived bed voidage equation of the bubbling fluidization based on the two-phase theory.The model was then analyzed with different function graphs of the model equations under various conditions.The results indicated that an increase in gas velocity or volume fraction of larger particles would strengthen size segregation,causing the larger and less dense components to descend.To validate the model,42 sets of data collected from 6 independent literature sources were compared with the predictions of the model.When the gas velocities were below 3.2 times the minimum gas velocity,the predictions were consistent with experimental results.This study has shed new light on the mechanisms of particle segregation in binary fluidized systems and provides a theoretical foundation for designing and manipulating gas-solid fluidized reactors.
基金Financial support of this work by the National Natural Science Foundation of China(grant No.52106216)Fundamental Research Funds for the Central Universities(grant No.27RA2114005)are gratefully acknowledged.
文摘Pressurized fluidized beds have been developed in quite a few industrial applications because of intensified heat and mass transfer and chemical reaction.The bubble behaviors under elevated pressure,strongly influencing the fluidization and reaction conversion of the whole system,are of great research significance.In this work,the bubble behaviors of Geldart B particle in a pseudo two-dimensional(2D)pressurized fluidized bed were experimentally studied based on digital image analysis technique.The effects of pressure and fluidization gas velocity on the general bubble behaviors(i.e.,size,shape and spatial distribution)and the dynamic characteristics,such as the time-evolution of voidage distribution and local flow regimes,were comprehensively investigated.Results show that increasing pressure re-duces the stability of bubbles and facilitates gas passing through the emulsion phase,resulting in the"smoother"fluidization state with smaller bubbles and declined bubble fraction and standard deviation.The equivalent bubble diameter and bubble aspect ratio increase with the increasing gas velocity while decrease as pressure rises.The elevated pressure reduces bubbles extension in the vertical direction,prohibits the"short pass"of fluidization gas in large oblong bubbles/slugs and benefits the gas-solid interaction.The flow regimes variation with gas velocity is affected by the elevated pressure,and demonstrates different features in different local positions of the bed.
基金supported by the National Key Research Plan (2019YFE0102100)the Huaneng Group Science and Technology Research Project (HNKj20-H50)the C9 University Science and Technology Project (201903D421009).
文摘The fluidization state in the circulating fluidized bed(CFB)boiler is crucial to its stable and safe operation.However,up to now,the research field has not reached unanimity on whether the fluidization regime that the upper furnace of the boiler operates in is the fast fluidization or pneumatic transport.To this end,this paper reviewed relevant research on the transition between the fast fluidization and pneumatic transport of Geldart group B particles,including the flow characteristics of the fast fluidization,the transition condition between the fast fluidization and pneumatic transport,the determination methods of the transport velocity utr and saturation carrying capacity G_(s)* and the influencing factors on these two parameters.Previous research findings can provide certain guidelines for the design and optimization of the CFB boiler,and result in plenty of prediction correlations for utr and G_(s)*.Nonetheless,owing to insufficient data available on Geldart group B particles,especially the ones obtained under high temperature or pressure conditions and in large-scale CFB apparatuses,the existing correlations are not well suited for the prediction of u_(tr) and G_(s)* of Geldart group B particles.Thus,further efforts are urgently demanded on the fast fluidization transition of Geldart group B particles.
基金Supported by the National Key R&D Program of China[2016YFB0600802]the National Natural Science Foundation of China[51390492,51325601]
文摘A three-dimensional(3D) fast fluidized bed with the riser of 3.0 m in height and 0.1 m in inner diameter was established to experimentally study the cluster behaviors of Geldart B particles. Five kinds of quartz sand particles(dp= 0.100, 0.139, 0.177, 0.250 and 0.375 mm and ρp= 2480 kg·m^(-3)) were respectively investigated, with the total mass of the bed material kept as 10 kg. The superficial gas velocity in the riser ranges from 2.486 to 5.594 m·s^(-1) and the solid mass flux alters from 30 to 70 kg·((m^(-2)·s))^(-1). Cluster characteristics and evolutionary processes in the different positions of the riser were captured by the cluster visualization systems and analyzed by the self-developed binary image processing. The results found four typical cluster structures in the riser,i.e., the macro stripe-shaped cluster, saddle-shaped cluster, U-shaped cluster and the micro cluster. The increasing superficial gas velocity and particle sizes result in the increasing average cluster size and the decreasing cluster time fraction, while the solid mass flux in the riser have the reverse influences on the cluster size and time fraction. Additionally, clusters in the upper region of the riser often have the larger size and time fraction than that in the lower region. All these effects of operating conditions on clusters become less obvious when particle size is less than 0.100 mm.
文摘Magnetic particles can be uniformly fluidized by coupling the gas flow with an externally imposed magnetic field. Interparticle forces generated by the magnetic field cause aggregation of the particles in chain-like structures preferentially oriented along the magnetic field lines. In the present paper, we study the implications of the formation of these special types of aggregates on the empirical Richardson-Zaki (RZ) equation, originally proposed to describe the expansion of fluidized beds of non-aggregated particles. We have addressed two important issues, namely the flow regime, which is a function of the size of the aggregates, and the effect of shape and orientation of the chain-like aggregates with respect to gas flow on fluid drag. We propose a modified RZ equation (MRZE) in which the velocity scale, given by the terminal settling velocity of the individual aggregates, and the RZ exponent are predetermined as a function of the chain length. The chain length depends on the ratio of the magnetic energy to gravitational energy, and is estimated from the magnetic field intensity, and particle magnetization, size and density. Predictions of the MRZE are successfully compared with published results in the literature on the expansion of magnetic particles in the presence of externally applied magnetic fields.
文摘The incipient condition of hang-up for three Geldart-D powders has been experimentally studied in a 21 m long standpipe hopper system. Experimental results show that the pressure gradient for hang-up to occur is independent of the materials height in the hopper and the diameter of orifice and equals to (dpw/dl)s, which can be predicted by Eq. (7). While the corresponding gas velocity in the standpipe equals to the incipient fluidized velocity of particles at the high pressure and can be predicted by Kwauk's equation.
基金supported by the National Natural Science Foundation of China(21908062)。
文摘A computational study was carried out on bubble dynamic behaviors and bubble size distributions in a pressurized lab-scale gas-solid fluidized bed of Geldart A particles.High-resolution 3-D numerical simulations were performed using the two-fluid model based on the kinetic theory of granular flow.A finegrid,which is in the range of 3–4 particle diameters,was utilized in order to capture bubble structures explicitly without breaking down the continuum assumption for the solid phase.A novel bubble tracking scheme was developed in combination with a 3-D detection and tracking algorithm(MS3 DATA)and applied to detect the bubble statistics,such as bubble size,location in each time frame and relative position between two adjacent time frames,from numerical simulations.The spatial coordinates and corresponding void fraction data were sampled at 100 Hz for data analyzing.The bubble coalescence/break-up frequencies and the daughter bubble size distribution were evaluated by using the new bubble tracking algorithm.The results showed that the bubble size distributed non-uniformly over cross-sections in the bed.The equilibrium bubble diameter due to bubble break-up and coalescence dynamics can be obtained,and the bubble rise velocity follows Davidson’s correlation closely.Good agreements were obtained between the computed results and that predicted by using the bubble break-up model proposed in our previous work.The computational bubble tracking method showed the potential of analyzing bubble motions and the coalescence and break-up characteristics based on time series data sets of void fraction maps obtained numerically and experimentally.