期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Gaussian-Student's t mixture distribution PHD robust filtering algorithm based on variational Bayesian inference
1
作者 HU Zhentao YANG Linlin +1 位作者 HU Yumei YANG Shibo 《High Technology Letters》 EI CAS 2022年第2期181-189,共9页
Aiming at the problem of filtering precision degradation caused by the random outliers of process noise and measurement noise in multi-target tracking(MTT) system,a new Gaussian-Student’s t mixture distribution proba... Aiming at the problem of filtering precision degradation caused by the random outliers of process noise and measurement noise in multi-target tracking(MTT) system,a new Gaussian-Student’s t mixture distribution probability hypothesis density(PHD) robust filtering algorithm based on variational Bayesian inference(GST-vbPHD) is proposed.Firstly,since it can accurately describe the heavy-tailed characteristics of noise with outliers,Gaussian-Student’s t mixture distribution is employed to model process noise and measurement noise respectively.Then Bernoulli random variable is introduced to correct the likelihood distribution of the mixture probability,leading hierarchical Gaussian distribution constructed by the Gaussian-Student’s t mixture distribution suitable to model non-stationary noise.Finally,the approximate solutions including target weights,measurement noise covariance and state estimation error covariance are obtained according to variational Bayesian inference approach.The simulation results show that,in the heavy-tailed noise environment,the proposed algorithm leads to strong improvements over the traditional PHD filter and the Student’s t distribution PHD filter. 展开更多
关键词 multi-target tracking(MTT) variational Bayesian inference gaussian-student’s t mixture distribution heavy-tailed noise
下载PDF
高超声速飞行器自适应鲁棒跟踪滤波算法 被引量:1
2
作者 梁新茹 高长生 荆武兴 《宇航学报》 EI CAS CSCD 北大核心 2023年第5期752-763,共12页
针对高超声速飞行器在复杂空域飞行时,探测信息为非平稳且统计信息未知的非高斯闪烁噪声,提出了一种改进的鲁棒高斯-学生t混合分布滤波(RGSTMF)算法。首先,针对噪声的非高斯和非平稳特性,该算法利用高斯-学生t混合(GSTM)分布对量测噪声... 针对高超声速飞行器在复杂空域飞行时,探测信息为非平稳且统计信息未知的非高斯闪烁噪声,提出了一种改进的鲁棒高斯-学生t混合分布滤波(RGSTMF)算法。首先,针对噪声的非高斯和非平稳特性,该算法利用高斯-学生t混合(GSTM)分布对量测噪声进行建模。针对实际跟踪过程中存在的噪声统计特性未知问题,采用高斯-逆Wishart分布对量测噪声未知且时变的均值进行描述,并且采用伽马函数对学生t(ST)分布的自由度进行建模。引入伯努利随机变量和隐变量,将建模好的GSTM分布模型描述成分层高斯状态空间。基于构建的分层高斯状态空间模型,通过变分贝叶斯算法,完成对RGSTMF算法的推导。仿真结果表明,在复杂空域噪声的探测信息异常值出现以及探测信息统计特征未知时,所提出的算法能有效提高跟踪滤波的精度和鲁棒性。 展开更多
关键词 高超声速飞行器 高斯-学生t混合分布 变分贝叶斯算法 鲁棒跟踪
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部