近年来,多用户多输入多输出(Multiple-User Multiple-Input Multiple-Output,MU-MIMO)下行链路的预编码算法设计吸引了越来越多研究者的兴趣。然而目前并没有对基站端已知信道误差概率分布且约束条件为单天线功率约束(Per-Antenna Power...近年来,多用户多输入多输出(Multiple-User Multiple-Input Multiple-Output,MU-MIMO)下行链路的预编码算法设计吸引了越来越多研究者的兴趣。然而目前并没有对基站端已知信道误差概率分布且约束条件为单天线功率约束(Per-Antenna Power Constraints,PAPCS)的情况下的线性预编码算法的研究。针对上述情况,以遍历和速率(Expected Sum Rate)最大化为优化准则,主要基于约束随机逐次凸近似(Constrained Stochastic Successive Convex Approximation,CSSCA)、二阶对偶法、交替方向乘子法(Alternating Direction Method of Multipliers,ADMM)及高斯随机化(Gaussian Randomization)设计了线性预编码算法。所提算法的适用场景更符合实际情况,而且实验仿真结果证明,算法的性能较好。展开更多
针对差分进化算法开发能力较差的问题,提出一种具有快速收敛的新型差分进化算法.首先,利用最优高斯随机游走策略提高算法的开发能力;然后,采用基于个体优化性能的简化交叉变异策略实现种群的进化操作以加强其局部搜索能力;最后,通过个...针对差分进化算法开发能力较差的问题,提出一种具有快速收敛的新型差分进化算法.首先,利用最优高斯随机游走策略提高算法的开发能力;然后,采用基于个体优化性能的简化交叉变异策略实现种群的进化操作以加强其局部搜索能力;最后,通过个体筛选策略进一步提高算法的探索能力以避免陷入局部最优.12个标准测试函数和两种带约束的工程优化问题的实验结果表明,所提出的算法在收敛速度、算法可靠性及收敛精度方面均优于EPSDE、Sa DE、JADE、BSA、Co Bi DE、GSA和ABC等算法,在加强算法探索能力的同时能够有效地提高算法的开发能力.展开更多
针对无人机路径规划求解计算量大、难收敛等问题,提出了一种基于全粒子推动野马算法的路径规划方法。建立三维环境模型与路径代价模型,将路径规划问题转化为多维函数优化问题;采用一种自适应邻域搜索策略,改善算法的开发能力;利用高斯...针对无人机路径规划求解计算量大、难收敛等问题,提出了一种基于全粒子推动野马算法的路径规划方法。建立三维环境模型与路径代价模型,将路径规划问题转化为多维函数优化问题;采用一种自适应邻域搜索策略,改善算法的开发能力;利用高斯随机游走策略对个体的历史最优位置进行回溯搜索,改善算法的探索能力;考虑到自适应策略对初始种群多样性敏感的问题,结合Tent混沌映射初始化种群,提高算法的鲁棒性以及全局寻优能力;将提出的改进算法在13个经典测试函数中进行性能验证,并移植于无人机三维路径规划问题中。在30峰、40峰、50峰的环境模型下进行测试,与遗传算法、粒子群算法、SRM-PSO(self-regulating and self-perception particle swarm optimization with mutation mechanism)算法以及野马算法对比,全粒子推动野马算法皆取得最短平均路径,且在所有测试中都找到满足约束、无碰的路径。仿真结果证明,在复杂环境下全粒子推动野马算法具有优秀的全局寻优能力以及较好的鲁棒性。展开更多
文摘近年来,多用户多输入多输出(Multiple-User Multiple-Input Multiple-Output,MU-MIMO)下行链路的预编码算法设计吸引了越来越多研究者的兴趣。然而目前并没有对基站端已知信道误差概率分布且约束条件为单天线功率约束(Per-Antenna Power Constraints,PAPCS)的情况下的线性预编码算法的研究。针对上述情况,以遍历和速率(Expected Sum Rate)最大化为优化准则,主要基于约束随机逐次凸近似(Constrained Stochastic Successive Convex Approximation,CSSCA)、二阶对偶法、交替方向乘子法(Alternating Direction Method of Multipliers,ADMM)及高斯随机化(Gaussian Randomization)设计了线性预编码算法。所提算法的适用场景更符合实际情况,而且实验仿真结果证明,算法的性能较好。
文摘针对差分进化算法开发能力较差的问题,提出一种具有快速收敛的新型差分进化算法.首先,利用最优高斯随机游走策略提高算法的开发能力;然后,采用基于个体优化性能的简化交叉变异策略实现种群的进化操作以加强其局部搜索能力;最后,通过个体筛选策略进一步提高算法的探索能力以避免陷入局部最优.12个标准测试函数和两种带约束的工程优化问题的实验结果表明,所提出的算法在收敛速度、算法可靠性及收敛精度方面均优于EPSDE、Sa DE、JADE、BSA、Co Bi DE、GSA和ABC等算法,在加强算法探索能力的同时能够有效地提高算法的开发能力.
文摘针对无人机路径规划求解计算量大、难收敛等问题,提出了一种基于全粒子推动野马算法的路径规划方法。建立三维环境模型与路径代价模型,将路径规划问题转化为多维函数优化问题;采用一种自适应邻域搜索策略,改善算法的开发能力;利用高斯随机游走策略对个体的历史最优位置进行回溯搜索,改善算法的探索能力;考虑到自适应策略对初始种群多样性敏感的问题,结合Tent混沌映射初始化种群,提高算法的鲁棒性以及全局寻优能力;将提出的改进算法在13个经典测试函数中进行性能验证,并移植于无人机三维路径规划问题中。在30峰、40峰、50峰的环境模型下进行测试,与遗传算法、粒子群算法、SRM-PSO(self-regulating and self-perception particle swarm optimization with mutation mechanism)算法以及野马算法对比,全粒子推动野马算法皆取得最短平均路径,且在所有测试中都找到满足约束、无碰的路径。仿真结果证明,在复杂环境下全粒子推动野马算法具有优秀的全局寻优能力以及较好的鲁棒性。