为同时考虑多种不确定因素对非线性结构模型修正的影响,提出了一种基于模块化贝叶斯推理的随机非线性模型修正方法。为了描述具有时变特性的非线性动力响应,提取结构动力响应主分量的瞬时加速度幅值作为非线性指标,基于贝叶斯方法,将整...为同时考虑多种不确定因素对非线性结构模型修正的影响,提出了一种基于模块化贝叶斯推理的随机非线性模型修正方法。为了描述具有时变特性的非线性动力响应,提取结构动力响应主分量的瞬时加速度幅值作为非线性指标,基于贝叶斯方法,将整个模型修正过程分为3个相互独立的模块:首先建立非线性模型的高斯过程替代模型记为模块一;同时,为考虑模型误差对非线性结构随机模型修正的影响,将设计变量作为输入,模型误差作为输出,建立关于模型误差的高斯过程替代模型,记为模块二;最后,结合贝叶斯推理方法与模块一和模块二中的高斯过程模型,利用过渡马尔可夫链蒙特卡罗(transitional Markov Chain Monte Carlo,TMCMC)随机采样方法估计待修正参数后验概率密度函数,实现基于模块化贝叶斯推理的随机非线性模型修正研究。采用三跨连续梁桥数值算例来验证所提出的随机非线性模型修正方法的准确性,并对比了不同噪声水平、不同程度模型误差条件下的模型修正结果。研究结果表明,基于模块化贝叶斯推理的随机非线性模型修正方法能够有效地实现非线性结构的随机模型修正,并具有较好的鲁棒性。展开更多
针对模型响应不确定性的稳健参数设计问题,在高斯过程回归(Gaussian process regression, GPR)建模的框架下,结合贝叶斯超参数最大后验(Maximum a posteriori estimation, MAP)估计和多目标线性加权方法构建一个新的优化模型.首先,利用...针对模型响应不确定性的稳健参数设计问题,在高斯过程回归(Gaussian process regression, GPR)建模的框架下,结合贝叶斯超参数最大后验(Maximum a posteriori estimation, MAP)估计和多目标线性加权方法构建一个新的优化模型.首先,利用MAP方法获得最优超参数组合,构建高斯回归模型;然后,考虑响应不确定性与响应之间的交互效应,采用线性加权准则,构建多响应稳健优化模型;最后,利用聚类分析方法获得最优参数解.该方法考虑了输出响应不确定性对优化结果的影响,权衡了最优因子水平与多元质量特性之间的关系.结合实际案例和软件仿真对所提出方法进行实证研究,结果表明,该方法能够较好地兼顾输出响应的最优性和稳健性,从而实现稳健参数设计.展开更多
For an expensive to evaluate computer simulator, even the estimate of the overall surface can be a challenging problem. In this paper, we focus on the estimation of the inverse solution, i.e., to find the set(s) of in...For an expensive to evaluate computer simulator, even the estimate of the overall surface can be a challenging problem. In this paper, we focus on the estimation of the inverse solution, i.e., to find the set(s) of input combinations of the simulator that generates a pre-determined simulator output. Ranjan et al. [1] proposed an expected improvement criterion under a sequential design framework for the inverse problem with a scalar valued simulator. In this paper, we focus on the inverse problem for a time-series valued simulator. We have used a few simulated and two real examples for performance comparison.展开更多
文摘为同时考虑多种不确定因素对非线性结构模型修正的影响,提出了一种基于模块化贝叶斯推理的随机非线性模型修正方法。为了描述具有时变特性的非线性动力响应,提取结构动力响应主分量的瞬时加速度幅值作为非线性指标,基于贝叶斯方法,将整个模型修正过程分为3个相互独立的模块:首先建立非线性模型的高斯过程替代模型记为模块一;同时,为考虑模型误差对非线性结构随机模型修正的影响,将设计变量作为输入,模型误差作为输出,建立关于模型误差的高斯过程替代模型,记为模块二;最后,结合贝叶斯推理方法与模块一和模块二中的高斯过程模型,利用过渡马尔可夫链蒙特卡罗(transitional Markov Chain Monte Carlo,TMCMC)随机采样方法估计待修正参数后验概率密度函数,实现基于模块化贝叶斯推理的随机非线性模型修正研究。采用三跨连续梁桥数值算例来验证所提出的随机非线性模型修正方法的准确性,并对比了不同噪声水平、不同程度模型误差条件下的模型修正结果。研究结果表明,基于模块化贝叶斯推理的随机非线性模型修正方法能够有效地实现非线性结构的随机模型修正,并具有较好的鲁棒性。
文摘针对模型响应不确定性的稳健参数设计问题,在高斯过程回归(Gaussian process regression, GPR)建模的框架下,结合贝叶斯超参数最大后验(Maximum a posteriori estimation, MAP)估计和多目标线性加权方法构建一个新的优化模型.首先,利用MAP方法获得最优超参数组合,构建高斯回归模型;然后,考虑响应不确定性与响应之间的交互效应,采用线性加权准则,构建多响应稳健优化模型;最后,利用聚类分析方法获得最优参数解.该方法考虑了输出响应不确定性对优化结果的影响,权衡了最优因子水平与多元质量特性之间的关系.结合实际案例和软件仿真对所提出方法进行实证研究,结果表明,该方法能够较好地兼顾输出响应的最优性和稳健性,从而实现稳健参数设计.
文摘For an expensive to evaluate computer simulator, even the estimate of the overall surface can be a challenging problem. In this paper, we focus on the estimation of the inverse solution, i.e., to find the set(s) of input combinations of the simulator that generates a pre-determined simulator output. Ranjan et al. [1] proposed an expected improvement criterion under a sequential design framework for the inverse problem with a scalar valued simulator. In this paper, we focus on the inverse problem for a time-series valued simulator. We have used a few simulated and two real examples for performance comparison.