期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于时序特征模式识别的列车网侧过流故障实时诊断 被引量:5
1
作者 倪强 李学明 +1 位作者 刘侃 黄庆 《中国电机工程学报》 EI CSCD 北大核心 2022年第11期3963-3974,共12页
为了提升列车的智能化水平与现场检修效率,文中从系统角度出发,针对高速列车牵引传动系统网侧过流的精确故障定位问题,提出一种基于故障时序特征模式识别的实时诊断方法。该方法首先通过机理分析选择故障源集合关联的系统信号,其次,结... 为了提升列车的智能化水平与现场检修效率,文中从系统角度出发,针对高速列车牵引传动系统网侧过流的精确故障定位问题,提出一种基于故障时序特征模式识别的实时诊断方法。该方法首先通过机理分析选择故障源集合关联的系统信号,其次,结合案例数据波形与专家经验,挖掘故障源与系统信号的关联规律,提取相关故障特征指标;然后,基于故障特征指标的时序变化特性,利用高斯混合模型与隐层马尔科夫链算法建立列车网侧过流的时序特征辨识的故障诊断模型。最后,应用列车实际运行数据对提出的故障诊断模型进行验证,实验结果表明,所提算法能实现有效的故障检测与隔离功能,具有良好的应用价值。 展开更多
关键词 故障时序特征 时序特征模式识别 高斯混合模型与隐层马尔科夫链 实时诊断 牵引传动系统
下载PDF
基于GMM-HMM模型的智能下肢假肢运动意图识别 被引量:7
2
作者 盛敏 刘双庆 +1 位作者 王婕 苏本跃 《仪器仪表学报》 EI CAS CSCD 北大核心 2019年第5期169-178,共10页
传统下肢假肢运动意图识别方法常使用多模态传感器信号,带来一定的复杂性以及模式转换识别一般带有滞后性,提出了基于数据驱动下的智能下肢假肢运动意图识别方法。在对单侧下肢截肢者运动模式进行了重定义后,仅使用惯性传感器,采集健肢... 传统下肢假肢运动意图识别方法常使用多模态传感器信号,带来一定的复杂性以及模式转换识别一般带有滞后性,提出了基于数据驱动下的智能下肢假肢运动意图识别方法。在对单侧下肢截肢者运动模式进行了重定义后,仅使用惯性传感器,采集健肢侧处于摆动相的时序数据。选择高斯混合-隐马尔可夫模型作为分类器,对下肢假肢的运动意图进行识别。实验结果表明,该算法在模式空间中的一组基模式:平地行走、上坡、下坡、上楼和下楼5种稳态模式中,识别率达到98.99%,在包含5种稳态模式和8类转换模式的13类运动模式中的识别率可达到96.92%。所提出的方法可以在下肢假肢运动意图识别性能上有较大提升,帮助单侧下肢截肢者实现自然、流畅、稳定的行走。 展开更多
关键词 运动意图识别 惯性传感器 高斯混合-隐马尔可夫模型 模式转换 摆动相
下载PDF
基于瓶颈复合特征的声学模型建立方法 被引量:3
3
作者 郑文秀 赵峻毅 +1 位作者 文心怡 姚引娣 《计算机工程》 CAS CSCD 北大核心 2020年第11期301-305,314,共6页
针对梅尔频率倒谱系数(MFCC)语音特征不能有效反映连续帧之间有效信息的问题,基于深度神经网络相关性和紧凑性特征,提出一种融合神经网瓶颈特征与MFCC特征的复合特征构造方法,提高语音的表征能力和建模能力。从语音数据中提取MFCC特征... 针对梅尔频率倒谱系数(MFCC)语音特征不能有效反映连续帧之间有效信息的问题,基于深度神经网络相关性和紧凑性特征,提出一种融合神经网瓶颈特征与MFCC特征的复合特征构造方法,提高语音的表征能力和建模能力。从语音数据中提取MFCC特征作为输入数据,将MFCC特征和BN特征进行串接得到新的复合特征,并进行GMM-HMM声学建模。在TIMIT数据库上的实验结果表明,与单一的瓶颈特征和深度神经网络后验特征相比,该方法识别率明显提升。 展开更多
关键词 深度神经网络 梅尔频率倒谱系数 瓶颈特征 复合特征 高斯混合模型-隐马尔科夫模型
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部