Some applications are constrained only to implement low cost receivers. In this case, designers are required to use less complex and non-expensive modulation techniques. Differential Quadrature Phase Shift Keying (DQP...Some applications are constrained only to implement low cost receivers. In this case, designers are required to use less complex and non-expensive modulation techniques. Differential Quadrature Phase Shift Keying (DQPSK) and Gaussian Frequency Shift Keying (GFSK) can be non-coherently demodulated with simple algorithms. However, these types of demodulation are not robust and suffer from poor performance. This paper proposes a new method to enhance the performance of DQPSK and GFSK using Interactive Kalman Filtering (IKF) technique, in which a one Unscented Kalman Filter (UKF) and two Kalman Filters (KF) are coupled to optimize the demodulated signals. This method consists of simple but very effective algorithms without adding complexity to the demodulators comparing to other very complex methods. UKF is used in this method due to its superiority in approximating and estimating nonlinear systems and its ability to handle non-Gaussian noise environments. The proposed method has been validated by creating a MATLAB/SIMULINK Bluetooth system model, in which the IKF is integrated into the receiver, which implement both DQPSK and GFSK, and run simulation in Gaussian and Non-Gaussian noise environments. Results have shown the effectiveness of this method in optimizing the received signals, and that the UKF outperforms the Extended Kalman Filter (EKF).展开更多
This paper presents a novel and cost effective method to be used in the optimization of the Gaussian Frequency Shift Keying (GFSK) at the receiver of the Bluetooth communication system. The proposed method enhances th...This paper presents a novel and cost effective method to be used in the optimization of the Gaussian Frequency Shift Keying (GFSK) at the receiver of the Bluetooth communication system. The proposed method enhances the performance of the noncoherent demodulation schemes by improving the Bit Error Rate (BER) and Frame Error Rate (FER) outcomes. Linear, Extended, and Unscented Kalman Filters are utilized in this technique. A simulation model, using Simulink, has been created to simulate the Bluetooth voice transmission system with the integrated filters. Results have shown improvements in the BER and FER, and that the Unscented Kalman Filters (UKF) have shown superior performance in comparison to the linear Kalman Filter (KF) and the Extended Kalman Filter (EKF). To the best of our knowledge, this research is the first to propose the usage of the UKF in the optimization of the Bluetooth System receivers in the presence of additive white Gaussian noise (AWGN), as well as interferences.展开更多
文摘Some applications are constrained only to implement low cost receivers. In this case, designers are required to use less complex and non-expensive modulation techniques. Differential Quadrature Phase Shift Keying (DQPSK) and Gaussian Frequency Shift Keying (GFSK) can be non-coherently demodulated with simple algorithms. However, these types of demodulation are not robust and suffer from poor performance. This paper proposes a new method to enhance the performance of DQPSK and GFSK using Interactive Kalman Filtering (IKF) technique, in which a one Unscented Kalman Filter (UKF) and two Kalman Filters (KF) are coupled to optimize the demodulated signals. This method consists of simple but very effective algorithms without adding complexity to the demodulators comparing to other very complex methods. UKF is used in this method due to its superiority in approximating and estimating nonlinear systems and its ability to handle non-Gaussian noise environments. The proposed method has been validated by creating a MATLAB/SIMULINK Bluetooth system model, in which the IKF is integrated into the receiver, which implement both DQPSK and GFSK, and run simulation in Gaussian and Non-Gaussian noise environments. Results have shown the effectiveness of this method in optimizing the received signals, and that the UKF outperforms the Extended Kalman Filter (EKF).
文摘This paper presents a novel and cost effective method to be used in the optimization of the Gaussian Frequency Shift Keying (GFSK) at the receiver of the Bluetooth communication system. The proposed method enhances the performance of the noncoherent demodulation schemes by improving the Bit Error Rate (BER) and Frame Error Rate (FER) outcomes. Linear, Extended, and Unscented Kalman Filters are utilized in this technique. A simulation model, using Simulink, has been created to simulate the Bluetooth voice transmission system with the integrated filters. Results have shown improvements in the BER and FER, and that the Unscented Kalman Filters (UKF) have shown superior performance in comparison to the linear Kalman Filter (KF) and the Extended Kalman Filter (EKF). To the best of our knowledge, this research is the first to propose the usage of the UKF in the optimization of the Bluetooth System receivers in the presence of additive white Gaussian noise (AWGN), as well as interferences.