期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于改进型蚁群算法和Gauss-Markov随机场的植物病斑自适应分割 被引量:5
1
作者 冯登超 杨兆选 乔晓军 《沈阳农业大学学报》 CAS CSCD 北大核心 2007年第3期391-394,共4页
针对植物病害图像成分复杂、病斑排列无规则等特点,提出了基于改进型蚁群算法和Gauss-Markov随机场的自适应病斑分割算法。该算法采用自适应信息素更新策略,对信息量进行有差别的动态更新,克服了标准蚁群算法容易陷入局部最优造成的早... 针对植物病害图像成分复杂、病斑排列无规则等特点,提出了基于改进型蚁群算法和Gauss-Markov随机场的自适应病斑分割算法。该算法采用自适应信息素更新策略,对信息量进行有差别的动态更新,克服了标准蚁群算法容易陷入局部最优造成的早熟、停滞现象。同时,利用Markov随机场的局部相关特性并结合Gauss分布组成线性平稳自回归模型,针对植物病斑特征建立分割模型。最后,采用改进型蚁群算法对其进行优化,并结合Gauss-Markov随机场最大后验概率估计,实现对植物病斑的自适应分割。仿真试验表明,改进后的算法能够针对植物病斑特性实现自适应分割,鲁棒性较好。然而,对于蚁群算法与Markov的最佳耦合方式及参数初始值的设置仍需作进一步研究。 展开更多
关键词 植物病斑 蚁群算法 gaussmarkov随机 自适应分割
下载PDF
基于互信息熵差测度和Gauss-Markov随机场模型的医学图像分割 被引量:7
2
作者 王文辉 冯前进 陈武凡 《计算机研究与发展》 EI CSCD 北大核心 2009年第3期521-527,共7页
图像分割类数的确定一直是个难点,基于互信息熵差测度进行图像分割类数的确定,较好地解决了该问题.互信息熵差描述了随着分割类数增加时分割图像和原图像互信息量的增加程度,其作为一种类数确定测度时,可认为取得了一种分割类数与分割... 图像分割类数的确定一直是个难点,基于互信息熵差测度进行图像分割类数的确定,较好地解决了该问题.互信息熵差描述了随着分割类数增加时分割图像和原图像互信息量的增加程度,其作为一种类数确定测度时,可认为取得了一种分割类数与分割图像中所包含信息量的平衡,以此提出了分割类数确定的判别规则.在分割算法方面,Gauss-Markov模型既利用了图像的灰度信息,又通过Gibbs先验概率引入了图像的空间信息,能较好地用于分割含噪声的图像.然而,Gibbs惩罚因子β的确定却一直是个难点,为获得好的分割效果,通常用多个β值人工尝试.针对此问题,提出了一种类自适应的惩罚因子β,其利用后验概率来自动计算,并具有各类各向异性.再将模型利用EM-MAP算法来迭代求解.最后,将算法应用于医学图像的分割,实验表明该算法具有满意的分割效果. 展开更多
关键词 互信息量 分割类数 gauss-markov随机 类自适应 图像分割
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部