期刊文献+
共找到158篇文章
< 1 2 8 >
每页显示 20 50 100
基于双注意力残差循环单幅图像去雨集成网络 被引量:8
1
作者 张学锋 李金晶 《软件学报》 EI CSCD 北大核心 2021年第10期3283-3292,共10页
降雨会严重降低拍摄图像质量和影响户外视觉任务.由于不同图像中,雨的形状、方向和密度不同,导致单幅图像去雨是一项困难的任务.提出一种新的基于双注意力的残差循环单幅图像去雨集成网络(简称RDARENet).在网络中,因为上下文的信息对于... 降雨会严重降低拍摄图像质量和影响户外视觉任务.由于不同图像中,雨的形状、方向和密度不同,导致单幅图像去雨是一项困难的任务.提出一种新的基于双注意力的残差循环单幅图像去雨集成网络(简称RDARENet).在网络中,因为上下文的信息对于去除雨痕十分重要,所以首先采用多尺度的扩张卷积网络去获得更大的感受野.雨痕信息可以认为是多个雨层特征的叠加,为了更好地提取雨痕的特征和恢复背景图层信息,运用了通道和空间注意力机制的残差网络.通道注意力能够反映不同雨层的权重,而空间注意力则通过相邻空间特征之间的关系增强区域的表征.随着网络的加深,防止低层信息的丢失,采用级联的残差网络和长短时间记忆网络,将低层特征信息传递到高层中去,逐阶段地去除雨痕.在网络的输出部分,采用集成学习的方式,将每个阶段的输出结果通过门控网络加权相加,得到最终的无雨图像.实验结果表明,去雨和恢复纹理细节的效果都得到较大提升. 展开更多
关键词 单幅图像去雨 双注意力机制 残差网络 门控网络
下载PDF
一种用于中文微博情感分析的多粒度门控卷积神经网络 被引量:6
2
作者 陈珂 梁斌 +1 位作者 左敬龙 朱兴统 《郑州大学学报(理学版)》 CAS 北大核心 2020年第3期21-26,33,共7页
提出一种多粒度门控卷积神经网络(multiple grains-gated convolutional neural networks,MG-GCNN)模型。该模型通过结合词语和单字层面的上下文信息作为网络的输入信息,使网络模型可以充分利用上下文中不同粒度的文本特征信息,并且通... 提出一种多粒度门控卷积神经网络(multiple grains-gated convolutional neural networks,MG-GCNN)模型。该模型通过结合词语和单字层面的上下文信息作为网络的输入信息,使网络模型可以充分利用上下文中不同粒度的文本特征信息,并且通过门控操作有效控制不同粒度信息的更新和传递。在不同领域微博文本数据集上的实验结果表明,所提出的MG-GCNN模型取得了比传统分类模型和深度网络模型更好的情感分类效果。 展开更多
关键词 中文微博情感分析 门控网络 深度学习 卷积神经网络 自然语言处理
下载PDF
基于编码器共享和门控网络的生成式文本摘要方法 被引量:6
3
作者 田珂珂 周瑞莹 +1 位作者 董浩业 印鉴 《北京大学学报(自然科学版)》 EI CAS CSCD 北大核心 2020年第1期61-67,共7页
结合基于自注意力机制的Transformer模型,提出一种基于编码器共享和门控网络的文本摘要方法。该方法将编码器作为解码器的一部分,使解码器的部分模块共享编码器的参数,同时使用门控网络筛选输入序列中的关键信息。相对已有方法,所提方... 结合基于自注意力机制的Transformer模型,提出一种基于编码器共享和门控网络的文本摘要方法。该方法将编码器作为解码器的一部分,使解码器的部分模块共享编码器的参数,同时使用门控网络筛选输入序列中的关键信息。相对已有方法,所提方法提升了文本摘要任务的训练和推理速度,同时提升了生成摘要的准确性和流畅性。在英文数据集Gigaword和DUC2004上的实验表明,所提方法在时间效率和生成摘要质量上,明显优于已有模型。 展开更多
关键词 生成式 文本摘要 自注意力机制 编码器共享 门控网络
下载PDF
基于门控图游走网络的推荐多样性研究
4
作者 方月婷 武浩 《云南大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第2期228-236,共9页
近年来,纯粹追求准确性的推荐算法已不再符合用户日益增长的多元化需求.因为该类算法将所有用户同等对待,导致推荐结果趋于单一化.从推荐系统的多样性角度出发,提出由两路图游走网络和门控网络组成的门控图游走网络.图游走网络在原有邻... 近年来,纯粹追求准确性的推荐算法已不再符合用户日益增长的多元化需求.因为该类算法将所有用户同等对待,导致推荐结果趋于单一化.从推荐系统的多样性角度出发,提出由两路图游走网络和门控网络组成的门控图游走网络.图游走网络在原有邻域上扩展一类新邻域,聚合两类邻域的信息,从而生成偏向准确性或多样性的推荐结果.门控网络对两个不同偏好推荐结果进行选择,得到最终推荐结果.不同于其他推荐多样性算法,门控图游走网络的推荐结果准确性-多样性比例可由超参数λ调整,而不是完全由算法决定.3个真实数据集的实验结果验证了门控图游走网络在多样化整体协作推荐方面的有效性. 展开更多
关键词 协同过滤 图神经网络 门控网络 随机游走 多样性
下载PDF
基于双向注意力机制的图像描述生成 被引量:4
5
作者 张家硕 洪宇 +2 位作者 李志峰 姚建民 朱巧明 《中文信息学报》 CSCD 北大核心 2020年第9期53-61,共9页
结合注意力机制的编码器—解码器框架被广泛应用于图像描述生成任务中。以往方法中,注意力机制根据当前时刻的语义信息挑选出重要的局部图像特征,进而依靠解码器的"翻译"能力将图像特征解码成文字。然而,在此过程中,单向的注... 结合注意力机制的编码器—解码器框架被广泛应用于图像描述生成任务中。以往方法中,注意力机制根据当前时刻的语义信息挑选出重要的局部图像特征,进而依靠解码器的"翻译"能力将图像特征解码成文字。然而,在此过程中,单向的注意力机制并未检验语义信息与图像内容的一致性。因此,所生成的描述在准确性方面有所欠缺。为解决上述问题,该文提出一种基于双向注意力机制的图像描述生成方法,在单向注意力机制的基础上,加入图像特征到语义信息方向上的注意力计算,实现图像和语义信息两者在两个方向上的交互,并设计了一种门控网络对上述两个方向上的信息进行融合。最终,提高解码器所蕴含的语义信息与图像内容的一致性,使得所生成描述更加准确。此外,与前人研究不同的是,该文在注意力模块中利用了历史时刻的语义信息辅助当前时刻的单词生成,并对历史语义信息的作用进行了验证。该文基于MSCOCO和Flickr30k两种图像描述生成数据集,并使用两种图像特征进行了实验。实验结果显示,在MSCOCO数据集上,BLEU4分值平均提升1.3,CIDEr值平均提升6.3。在Flickr30k数据集上,BLEU4分值平均提升0.9,CIDEr值平均提升2.4。 展开更多
关键词 图像描述生成 双向注意力 门控网络 历史语义信息
下载PDF
基于层次门控交互融合网络的谣言检测方法
6
作者 苏兴 禹可 吴晓非 《北京邮电大学学报》 EI CAS CSCD 北大核心 2023年第4期97-102,共6页
针对现有谣言检测方法对多特征做处理时因特征间差异导致特征冲突的问题,提出了一种基于层次门控交互融合网络的谣言检测方法。首先,利用一阶门控对原贴和评论的语义特征和情感特征做特征增强,然后,利用二阶门控对增强特征做跨语义特征... 针对现有谣言检测方法对多特征做处理时因特征间差异导致特征冲突的问题,提出了一种基于层次门控交互融合网络的谣言检测方法。首先,利用一阶门控对原贴和评论的语义特征和情感特征做特征增强,然后,利用二阶门控对增强特征做跨语义特征融合,以解决特征融合时由于不同特征之间的差异引入噪声的问题。在公开的Weibo数据集和自建的Weibo22数据集上,所提方法的检测正确率分别为96.71%和97.36%。与检测性能最好的基线方法相比,检测正确率分别提高了0.84%和1.31%,训练时间分别减少了53%和46%。 展开更多
关键词 谣言检测 门控网络 特征融合
原文传递
基于注意力机制和门控网络相结合的混合推荐系统 被引量:1
7
作者 郭亮 杨兴耀 +2 位作者 于炯 韩晨 黄仲浩 《计算机科学》 CSCD 北大核心 2022年第6期158-164,共7页
将用户评论和用户评分相结合来提升推荐系统的性能是推荐系统当前主流的研究方向,但是当用户评论数据稀疏时,现有的大多数推荐系统的性能会出现一定幅度的下降。针对这一问题,文中提出了一种结合注意力机制和门控网络形成的混合推荐系统... 将用户评论和用户评分相结合来提升推荐系统的性能是推荐系统当前主流的研究方向,但是当用户评论数据稀疏时,现有的大多数推荐系统的性能会出现一定幅度的下降。针对这一问题,文中提出了一种结合注意力机制和门控网络形成的混合推荐系统(Attention Mechanism and Gating Network-based Recommendation System,AMGNRS)。该模型利用志趣相投的用户所产生的辅助评论来缓解用户评论的稀疏性问题,首先将多种混合注意力机制相结合来提高提取用户评论及评分的特征的效率,然后通过门控网络自适应地融合提取的特征并选出与用户偏好最相关的特征,最后利用神经因子分解机的高阶线性相互作用来推导评分预测。将所提模型与当前表现优异的模型在3个真实数据集上进行了对比实验,结果表明,所提模型显著地缓解了数据的稀疏性问题,验证了其有效性。 展开更多
关键词 推荐系统 注意力机制 门控网络 语义信息 协同过滤
下载PDF
基于双尺度特征融合的单幅图像去雾网络 被引量:1
8
作者 兰云伟 崔智高 +3 位作者 苏延召 汪波 王念 李艾华 《计算机工程》 CAS CSCD 北大核心 2022年第11期231-239,共9页
基于深度学习的图像去雾方法在合成数据集上表现良好,但在真实场景中应用时存在去雾不彻底、颜色失真等问题。提出一种新的单幅图像去雾网络,该网络包含特征提取、特征融合2个模块。在特征提取模块中,通过残差密集块和具有空间注意机制... 基于深度学习的图像去雾方法在合成数据集上表现良好,但在真实场景中应用时存在去雾不彻底、颜色失真等问题。提出一种新的单幅图像去雾网络,该网络包含特征提取、特征融合2个模块。在特征提取模块中,通过残差密集块和具有空间注意机制的特征提取块分别提取图像的局部特征和全局特征。在特征融合模块中,利用通道注意力机制对局部特征图和全局特征图进行通道加权,并通过卷积操作融合加权后的局部特征图与全局特征图。最后,采用门控网络自适应结合3个不同深度的融合特征图,以恢复高质量的去雾图像。实验结果表明,所提网络在室内数据集下的峰值信噪比(PSNR)和结构相似度(SSIM)分别为33.04 dB、0.983,在HAZERD数据集下的PSNR和SSIM分别比GridDehazeNet网络高出1.33 dB和0.041。同时,该网络的模型参数量和浮点运算数分别为0.34M和16.06×109frame/s,具有较低复杂度,对合成图像和真实图像均可取得理想的去雾效果。 展开更多
关键词 深度学习 图像去雾 注意机制 特征融合 门控网络
下载PDF
一种会话理解模型的问题生成方法
9
作者 时雨涛 孙晓 《计算机科学》 CSCD 北大核心 2022年第3期232-238,共7页
会话问题生成(Conversational Question Generation,CQG)不同于根据段落和答案生成单轮问题的问题生成任务,CQG额外考虑由历史问答对构成的会话信息,生成的问题承接会话历史内容,保持较高的一致性。针对这一特性,文中提出了字级别和句... 会话问题生成(Conversational Question Generation,CQG)不同于根据段落和答案生成单轮问题的问题生成任务,CQG额外考虑由历史问答对构成的会话信息,生成的问题承接会话历史内容,保持较高的一致性。针对这一特性,文中提出了字级别和句级别注意力机制模块来增强对会话历史信息的提取能力,确保当前轮次的问题融合会话历史中每个词和句子的特征,从而生成连贯的、高质量的问题。疑问词的正确性较重要,生成的问题需要和数据集中原始问题对应的答案类型相互匹配,在疑问词预测模块中构造额外的损失函数作为疑问词类型的限制。综合各个模块得到会话理解模型(Conversational Comprehension Network,CCNet),实验结果表明,该模型在大部分评测指标上高于基线模型,在CoQA数据集上Bleu1和Bleu2分别达到39.70和23.76,生成的问题质量更高。在消融实验和跨数据集实验中该模型被证明是有效的,说明CCNet模型具有较强的通用能力。 展开更多
关键词 问题生成 注意力机制 会话问题生成 循环神经网络 门控网络
下载PDF
基于变分模态分解和深度门控网络的径流预测 被引量:44
10
作者 李文武 石强 +1 位作者 王凯 程雄 《水力发电学报》 EI CSCD 北大核心 2020年第3期34-44,共11页
为提高水库中长期入库径流预测精度,提出变分模态分解、相空间重构和深度门控网络相结合的径流组合预测模型。首先对历史径流数据进行变分模态分解,产生多个模态分量;接着将分解得到的模态分量重构到高维特征空间,形成深度学习的输入;... 为提高水库中长期入库径流预测精度,提出变分模态分解、相空间重构和深度门控网络相结合的径流组合预测模型。首先对历史径流数据进行变分模态分解,产生多个模态分量;接着将分解得到的模态分量重构到高维特征空间,形成深度学习的输入;然后利用深度门控网络获取历史径流详细特征并进行预测;最后累加各模态分量的预测值完成重构。以白山水库为例,将所建模型分别与单一预测模型和其他组合预测模型进行对比分析。结果表明:所建模型能有效分解非平稳性的径流序列,充分学习内嵌的水文规律,预测误差最小,且在整个测试集上分布更为合理,拟合优度检验值最高。研究结果可为水库水资源规划管理提供技术依据。 展开更多
关键词 变分模态分解 相空间重构 深度门控网络 中长期入库径流预测 评价指标
原文传递
基于间接融合方式的多模态情感分析门控算法
11
作者 杨萌 李业刚 张浩 《计算机仿真》 2024年第8期379-385,432,共8页
由于Transformer的并行结构,在多模态情感分析领域借助其间接融合的模型大多难以建模时间维度上的语义关系、不能针对不同模态的重要程度有效控制信息输出。为此,提出AGRU-Transfusion-MGN融合算法。算法在门控循环单元上添加软注意力机... 由于Transformer的并行结构,在多模态情感分析领域借助其间接融合的模型大多难以建模时间维度上的语义关系、不能针对不同模态的重要程度有效控制信息输出。为此,提出AGRU-Transfusion-MGN融合算法。算法在门控循环单元上添加软注意力机制,提取时序情感信息;在Transformer的编码器和解码器间构造反向转换,使用平均绝对误差弥合解码特征与相应目标特征的融合损失;设置门控函数搭建多模态门控机制,综合判断不同模态的重要性。为验证算法性能,在多模态情感数据集CMU-MOSEI上进行实验,使用加权精度、平均绝对误差以及符号检测作为评价指标,结果显示本方法优于当前见刊的先进方法。 展开更多
关键词 多模态情感分析 门控循环单元 多模态融合 多模态门控网络
下载PDF
融入观点句特征的汉越双语新闻情感分类 被引量:3
12
作者 林思琦 余正涛 +1 位作者 郭军军 高盛祥 《昆明理工大学学报(自然科学版)》 CAS 北大核心 2020年第6期67-73,共7页
为了对越南语新闻进行情感分类,本文提出了一种融入观点句特征的汉越双语新闻情感分类方法.新闻文本强调的是对事实的客观描述,情感的表达并不明显.新闻的观点句中包含较多情感信息,利用这些情感信息有助于新闻情感分类.首先通过汉越双... 为了对越南语新闻进行情感分类,本文提出了一种融入观点句特征的汉越双语新闻情感分类方法.新闻文本强调的是对事实的客观描述,情感的表达并不明显.新闻的观点句中包含较多情感信息,利用这些情感信息有助于新闻情感分类.首先通过汉越双语词嵌入模型将汉语和越南语映射到同一个语义空间中.然后根据新闻文本的特点,使用卷积神经网络从观点句中抽取观点特征,通过选择性门控网络将观点句特征融入隐藏层中,之后利用层次注意力机制对新闻中的情感信息进行关注,最后通过softmax对情感极性进行分类.实验表明,该方法可以有效地提升越南语新闻情感分类的准确性. 展开更多
关键词 汉越双语情感分类 选择性门控网络 观点句信息 层次注意力机制
原文传递
基于多神经网络融合的短期负荷预测方法 被引量:29
13
作者 庞昊 高金峰 杜耀恒 《电力自动化设备》 EI CSCD 北大核心 2020年第6期37-42,共6页
为了利用不同深度神经网络的优势,提高深度学习算法对短期负荷的预测能力,提出一种基于多神经网络融合的短期负荷预测方法。以电力系统历史有功负荷、季节、日期类型和气象数据为输入特征,并行架构的深度神经网络和注意力机制网络为核... 为了利用不同深度神经网络的优势,提高深度学习算法对短期负荷的预测能力,提出一种基于多神经网络融合的短期负荷预测方法。以电力系统历史有功负荷、季节、日期类型和气象数据为输入特征,并行架构的深度神经网络和注意力机制网络为核心网络;以并行架构中的卷积神经网络通道提取静态特征,门控循环单元网络通道挖掘动态时序特征,采用注意力机制网络融合提取的特征并动态调整网络对不同特征的依赖程度;使用Maxout网络增强网络整体的非线性映射能力,通过全连接网络输出预测结果。与支持向量机、长短期记忆网络的算例结果对比表明,所提方法具有更高的预测平稳性和准确性。 展开更多
关键词 短期负荷预测 多神经网络融合 门控循环单元网络 卷积神经网络 注意力机制网络 Maxout网络
下载PDF
基于深度学习与误差修正的超短期风电功率预测 被引量:22
14
作者 李大中 李颖宇 《太阳能学报》 EI CAS CSCD 北大核心 2021年第12期200-205,共6页
提出一种基于深度学习与误差修正的超短期风电功率预测方法。首先采用双向门控循环单元网络模型对风电功率进行点预测,提取初步预测误差。其次,采用随机森林算法构造误差模型,对初步预测结果进行修正。最后,采用核密度估计方法对修正后... 提出一种基于深度学习与误差修正的超短期风电功率预测方法。首先采用双向门控循环单元网络模型对风电功率进行点预测,提取初步预测误差。其次,采用随机森林算法构造误差模型,对初步预测结果进行修正。最后,采用核密度估计方法对修正后的误差进行概率分布拟合,计算置信区间。利用某风电场数据对风电功率进行多时间尺度预测,通过仿真验证该文方法的有效性和适用性。 展开更多
关键词 风电功率 风电场 深度学习 预测误差 双向门控循环单元网络 区间预测
下载PDF
基于CNN-GRU分位数回归的短期母线负荷概率密度预测 被引量:19
15
作者 臧海祥 刘冲冲 +3 位作者 滕俊 孔伯骏 孙国强 卫志农 《智慧电力》 北大核心 2020年第8期24-30,69,共8页
随着分布式电源大规模并网,母线负荷的波动性和不确定性日益增加,给母线负荷预测带来新的挑战。传统的点预测方法难以对母线负荷的不确定性进行描述,为此提出一种基于卷积神经网络和门控循环神经网络分位数回归的概率密度预测方法。该... 随着分布式电源大规模并网,母线负荷的波动性和不确定性日益增加,给母线负荷预测带来新的挑战。传统的点预测方法难以对母线负荷的不确定性进行描述,为此提出一种基于卷积神经网络和门控循环神经网络分位数回归的概率密度预测方法。该方法通过卷积神经网络提取反映母线负荷动态变化的高阶特征,门控循环神经网络基于提取的高阶特征、天气、日类型等因素进行分位数回归建模,预测未来任意时刻不同分位数条件下的母线负荷值,最后利用核密度估计得到母线负荷概率密度曲线。以江苏省某市220 kV母线负荷数据进行测试,结果表明本文所提方法能够有效刻画未来母线负荷的概率分布,为配电网安全运行提供更多的决策信息。 展开更多
关键词 母线负荷预测 概率密度 卷积神经网络 门控循环神经网络 分位数回归
下载PDF
基于VMD-PSO-GRU模型的锂离子电池剩余寿命预测 被引量:12
16
作者 刘芊彤 邢远秀 《储能科学与技术》 CAS CSCD 北大核心 2023年第1期236-246,共11页
准确预测锂电池的剩余使用寿命(remaining useful life,RUL)对降低电池使用风险和保证系统的安全运行起着非常重要的作用。为了消除电池容量序列受容量再生等影响,提高预测结果的准确性和稳定性,提出了一种基于变分模态分解(variational... 准确预测锂电池的剩余使用寿命(remaining useful life,RUL)对降低电池使用风险和保证系统的安全运行起着非常重要的作用。为了消除电池容量序列受容量再生等影响,提高预测结果的准确性和稳定性,提出了一种基于变分模态分解(variational modal decomposition,VMD)与参数优化的门控循环神经网络(gate recurrent unit,GRU)相结合的RUL预测模型。首先采用VMD算法将锂电池的容量序列分解为一系列平稳分量;然后采用多层GRU网络对各分量进行预测,针对预测结果不稳定的问题,在模型训练前利用粒子群算法(particle swarm optimization,PSO)对GRU模型的参数进行优化;最后叠加各分量的预测值作为最终预测结果。在NASA数据集上对本模型进行了验证,当采用20个已知电池序列数据预测时,预测结果的最大平均绝对百分比误差和均方根误差控制在0.88%和0.0148以内,RUL预测的最大误差不超过2个充电周期,具有较高的鲁棒性和预测精度。 展开更多
关键词 锂电池 剩余寿命预测 变分模态分解 粒子群优化算法 门控循环神经网络
下载PDF
基于改进卷积双向门控循环网络的轴承故障诊断 被引量:15
17
作者 张昌凡 刘佳峰 +1 位作者 何静 刘建华 《电子测量与仪器学报》 CSCD 北大核心 2021年第11期61-67,共7页
针对传统深度学习方法没有充分利用轴承信号的时序特点,以及难以处理动态数据的问题,提出一种基于改进卷积双向门控循环神经网络的轴承故障智能诊断方法。采用卷积神经网络从输入信号中提取代表性特征,引入双向门控循环神经网络挖掘故... 针对传统深度学习方法没有充分利用轴承信号的时序特点,以及难以处理动态数据的问题,提出一种基于改进卷积双向门控循环神经网络的轴承故障智能诊断方法。采用卷积神经网络从输入信号中提取代表性特征,引入双向门控循环神经网络挖掘故障数据在时间维度上的语义信息,通过注意力机制自适应地对特征图通道赋予不同权值,从而实现高精度的轴承故障诊断。在公开轴承数据集上进行实验,实验结果表明,该方法能够正确地将轴承故障分类,分类精度可达99.6%。 展开更多
关键词 卷积神经网络 双向门控循环网络 通道注意力机制 轴承故障诊断
下载PDF
基于门控图神经网络的栓母对知识图谱构建与应用 被引量:15
18
作者 赵振兵 段记坤 +1 位作者 孔英会 张东霞 《电网技术》 EI CSCD 北大核心 2021年第1期98-106,共9页
由于电网规模增长,直升机、无人机巡线的大量应用,产生的航拍图像数量剧增,其中螺栓的缺陷因数量众多和体积较小,故由输电线路螺栓缺陷引发的事故频频发生。另外,现有输电线路螺栓缺陷分类方法仅限于表面特征提取而忽略目标间关联和受... 由于电网规模增长,直升机、无人机巡线的大量应用,产生的航拍图像数量剧增,其中螺栓的缺陷因数量众多和体积较小,故由输电线路螺栓缺陷引发的事故频频发生。另外,现有输电线路螺栓缺陷分类方法仅限于表面特征提取而忽略目标间关联和受复杂环境的影响大等问题。针对以上情况,该文提出利用螺栓螺母之间的关联组成栓母对,然后使用卷积神经网络提取栓母对特征初始化图网络节点和结合栓母对的先验知识表示栓母对缺陷与栓母对语义对象的关联,并以此来建立栓母对知识图谱指导栓母对缺陷分类。在此基础上,将输电线路上与螺栓相关的缺陷划分为栓母对缺陷,并建立粗级缺陷数据集和细级缺陷数据集。通过使用栓母对知识图谱来指导栓母对的缺陷分类实验,并以此来验证栓母对知识图谱的有效性和可行性。实验结果表明,该栓母对知识图谱实现了栓母对先验知识的有效运用,完成了栓母对粗级缺陷和细级缺陷的高效分类。 展开更多
关键词 栓母对 知识图谱 缺陷分类 门控图神经网络(GGNN)
下载PDF
基于GRU-RF模型的太阳辐照度短时预测 被引量:13
19
作者 周满国 黄艳国 段锦锋 《太阳能学报》 EI CAS CSCD 北大核心 2022年第7期166-173,共8页
针对现有太阳辐照度短期预测方法的建模复杂、准确度低等问题,提出一种基于深度学习的GRU-RF动态权值组合预测方法。大气因素与太阳辐照度数据融合,将运算速度较快且模型复杂度较低的随机森林(RF)模型与带有时序记忆的门控循环单元(GRU... 针对现有太阳辐照度短期预测方法的建模复杂、准确度低等问题,提出一种基于深度学习的GRU-RF动态权值组合预测方法。大气因素与太阳辐照度数据融合,将运算速度较快且模型复杂度较低的随机森林(RF)模型与带有时序记忆的门控循环单元(GRU)神经网络进行动态权值的加权集成,分别将地表接收到的太阳辐照度、近地层气温、相对湿度、近地层风速和相对气压等变化特征进行预测研究。通过几种模型对比分析,结果表明使用GRU-RF模型预测短时(9 h)太阳辐照度结果较好,运行速度较快,在不同时间间隔(5、10以及15 min)下能够很好地预测太阳辐照度数据。 展开更多
关键词 太阳辐照度 预测 深度学习 门控循环单元网络 随机森林 时间序列
下载PDF
基于局部和全局语义融合的跨语言句子语义相似度计算模型 被引量:14
20
作者 李霞 刘承标 +1 位作者 章友豪 蒋盛益 《中文信息学报》 CSCD 北大核心 2019年第6期18-26,共9页
跨语言句子语义相似度计算旨在计算不同语言句子之间的语义相似程度。近年来,前人提出了基于神经网络的跨语言句子语义相似度模型,这些模型多数使用卷积神经网络来捕获文本的局部语义信息,缺少对句子中远距离单词之间语义相关信息的获... 跨语言句子语义相似度计算旨在计算不同语言句子之间的语义相似程度。近年来,前人提出了基于神经网络的跨语言句子语义相似度模型,这些模型多数使用卷积神经网络来捕获文本的局部语义信息,缺少对句子中远距离单词之间语义相关信息的获取。该文提出一种融合门控卷积神经网络和自注意力机制的神经网络结构,用于获取跨语言文本句子中的局部和全局语义相关关系,从而得到文本的综合语义表示。在SemEval-2017多个数据集上的实验结果表明,该文提出的模型能够从多个方面捕捉句子间的语义相似性,结果优于基准方法中基于纯神经网络的模型方法。 展开更多
关键词 跨语言文本句子语义相似度 自注意力机制 门控卷积神经网络
下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部