期刊文献+
共找到26篇文章
< 1 2 >
每页显示 20 50 100
一种基于改进门控循环单元的叠前时变子波提取方法
1
作者 戴永寿 李泓浩 +2 位作者 孙伟峰 万勇 孙家钊 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2024年第4期1583-1600,共18页
子波的精确提取是地震勘探后续反演与成像的前提,针对传统时变子波提取方法受到的各类假设限制,且需分别提取子波振幅谱与相位谱的问题,本文提出了一种基于改进门控循环单元(GRU)网络的叠前时变地震子波提取方法.根据实际叠前地震数据... 子波的精确提取是地震勘探后续反演与成像的前提,针对传统时变子波提取方法受到的各类假设限制,且需分别提取子波振幅谱与相位谱的问题,本文提出了一种基于改进门控循环单元(GRU)网络的叠前时变地震子波提取方法.根据实际叠前地震数据分布特征与非平稳性质,本方法首先建立非平稳地震记录与添加随机噪声的时变子波训练数据集;为对提取出的时序特征进行拓展,提升传统GRU网络对长时序列的处理能力,本方法搭建起含多层GRU模块与全连接神经网络的改进门控循环单元网络模型;利用建立的训练数据集对网络模型进行训练使网络具备提取时变子波的能力;为提高训练效率与提取精度,本方法在训练的反向传播过程中应用自定义WaveLoss损失函数衡量误差,最终实现叠前时变子波的估计.经合成数据仿真实验与不同方法对比验证,本文提出的叠前时变子波提取方法具有更高的准确度;经对中国西部不同地区实际叠前地震资料处理与反褶积验证分析,该方法可有效提高目标区叠前地震剖面分辨率. 展开更多
关键词 时变子波提取 门控循环单元 叠前地震记录 反褶积
下载PDF
基于KPCA-K-means-GRU的短期风电功率预测研究 被引量:4
2
作者 徐艳 周建勋 +2 位作者 金鑫 王仕通 易灵芝 《电机与控制应用》 2023年第2期49-55,共7页
风能间歇性和波动性的特点给电网的平稳运行造成了很大的挑战,导致电网企业限制风电并网,造成弃风行为。因此,实时有效地预测风力发电情况对风电开发和电网的平稳运行至关重要。在分析当前多种预测方法后,提出了基于核主成分分析-K均值... 风能间歇性和波动性的特点给电网的平稳运行造成了很大的挑战,导致电网企业限制风电并网,造成弃风行为。因此,实时有效地预测风力发电情况对风电开发和电网的平稳运行至关重要。在分析当前多种预测方法后,提出了基于核主成分分析-K均值聚类-门控循环单元(KPCA-K-means-GRU)的短期风电功率预测模型。多维数据能够较好地还原实际物理状态,但过高维度的数据会带来维数灾难。因此,利用非线性的KPCA在保留高维数据信息的同时降低数据维度。随后借鉴负荷预测相似日思路,将降维后的数据通过K-means进行无监督聚类以建立不同的预测模型来提高预测精度。最后分别训练不同类别数据的GRU神经网络参数,进行分类预测以获得更合适的网络模型。 展开更多
关键词 短期风电功率预测 核主成分分析降维 门控循环单元网络 组合模型
下载PDF
基于COMGRU的AUV航路轨迹预测方法
3
作者 徐鹏 徐东 +2 位作者 李腾涛 赵宏瑞 赵佳媛 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2024年第7期1384-1390,共7页
针对采用神经网络预测自主水下机器人航迹存在滞后性的问题,本文提出一种基于信息压缩的改进门控循环神经网络,用于水下自主机器人航路多步轨迹预测。该算法将水下自主机器人航行轨迹附近的障碍物位置信息、海流信息以及时空轨迹信息共... 针对采用神经网络预测自主水下机器人航迹存在滞后性的问题,本文提出一种基于信息压缩的改进门控循环神经网络,用于水下自主机器人航路多步轨迹预测。该算法将水下自主机器人航行轨迹附近的障碍物位置信息、海流信息以及时空轨迹信息共同构成的地理位置信息进行数据压缩处理,作为本文预测网络的输入,以提高网络训练效率。实验验证该算法减少了水下自主机器人航迹多步预测的滞后性且具有较高的准确率。 展开更多
关键词 水下自主机器人 航迹预测 门控循环神经网络 数据压缩 时空轨迹 多步预测 滞后性
下载PDF
基于多层跨模态注意力融合的图文情感分析 被引量:3
4
作者 陈巧红 孙佳锦 +1 位作者 孙麒 贾宇波 《浙江理工大学学报(自然科学版)》 2022年第1期85-94,共10页
针对现有图文情感分析模型仅考虑图像高层特征与文本特征的联系,而忽视图像低层特征的问题,提出了一种基于多层跨模态注意力融合(Multi-level cross-modal attention fusion, MCAF)的图文情感分析模型。该模型首先将VGG13网络外接多层卷... 针对现有图文情感分析模型仅考虑图像高层特征与文本特征的联系,而忽视图像低层特征的问题,提出了一种基于多层跨模态注意力融合(Multi-level cross-modal attention fusion, MCAF)的图文情感分析模型。该模型首先将VGG13网络外接多层卷积,以获取不同层次的图像特征,并使用BERT词嵌入与双向门控循环网络(Gated recurrent unit, GRU)网络获取文本情感特征;然后将提取后的多层图像特征与文本特征进行注意力融合,得到多组单层文本-图像注意力融合特征,并将其通过注意力网络分配权重;最后将得到的多层文本-图像注意力融合特征输入全连接层,得到分类结果。在公开的MVSA和Memotion-7k数据集上进行实验,结果显示:与图文情感分析基线模型相比,基于多层跨模态注意力融合的图文情感分析模型的准确率和F1值在MVSA数据集上分别提升2.61%和3.56%,在Memotion-7k数据集上分别提升3.25%和3.63%。这表明该模型能够有效提高图文情感分类性能。 展开更多
关键词 图文情感分析 门控循环网络 注意力机制 跨模态融合 多层图像特征抽取
下载PDF
基于门控循环单元网络的输电杆塔螺栓紧固检测
5
作者 鲁炜 顾安琪 +3 位作者 骆昊骏 朱炜 王火根 文颖 《计算机系统应用》 2021年第4期277-282,共6页
输电塔杆螺栓紧固检测是保障高压电网安全的重要依据,传统的人工检测方法需要员工爬上输电杆塔检测操作,通常伴有一定程度的风险,而采用无人机巡检受许多外在的因素的影响,其检测效果并不理想.因此,本文提出一种基于门控循环单元网络的... 输电塔杆螺栓紧固检测是保障高压电网安全的重要依据,传统的人工检测方法需要员工爬上输电杆塔检测操作,通常伴有一定程度的风险,而采用无人机巡检受许多外在的因素的影响,其检测效果并不理想.因此,本文提出一种基于门控循环单元网络的输电杆塔螺栓紧固检测方法,利用振动传感器和传感分析仪构建一套采集输电铁塔声波数据的作业流程,提取训练样本中声波数据的线性预测倒谱系数LPCC构成特征向量;训练门控循环单元网络(Gated Recurrent Unit,GRU)分类模型从而检测未知紧固状态的声波样本,实验结果达到实用分析性能.通过本算法的应用,解决了在检测输电铁塔螺栓紧固问题上传统方法上的人力和方法性能问题. 展开更多
关键词 声波数据采集 线性预测倒谱系数 门控循环单元网络
下载PDF
基于特征挖掘的ARIMA-GRU短期电力负荷预测 被引量:19
6
作者 于军琪 聂己开 +1 位作者 赵安军 侯雪妍 《电力系统及其自动化学报》 CSCD 北大核心 2022年第3期91-99,共9页
针对短期电力负荷随机性较强、预测精度较低的问题,提出了一种基于混沌理论、变分模态分解VMD(variational modal decomposition)、整合移动平均自回归ARIMA(autoregressive integrated moving average)模型和门控循环单元GRU(gated rec... 针对短期电力负荷随机性较强、预测精度较低的问题,提出了一种基于混沌理论、变分模态分解VMD(variational modal decomposition)、整合移动平均自回归ARIMA(autoregressive integrated moving average)模型和门控循环单元GRU(gated recurrent unit)神经网络的组合预测方法。首先,对电力负荷历史数据进行相空间重构来提取混沌特征。然后,应用变分模态分解将相空间中的各维负荷序列分别分解为一组平稳性好的本征模态函数IMF(intrinsic mode function)。接着,根据频率指标过零率将每组本征模态函数重构为一个低频序列和一个高频序列。最后,分别使用ARIMA模型和GRU神经网络模型对各个低频序列和高频序列进行模型训练和迭代预测,综合各序列的预测值得到预测结果。实例分析表明,与所提其他智能算法相比,该方法具有更高的预测精度。 展开更多
关键词 负荷预测 相空间重构 变分模态分解 整合移动平均自回归模型 门控循环单元神经网络
下载PDF
基于GRU神经网络的太阳辐照度短期预测 被引量:16
7
作者 杨春熙 韩威 高志球 《中国科技论文》 CAS 北大核心 2020年第1期8-14,共7页
随着新能源技术的不断发展,光伏发电已逐渐成为电力供应的重要来源。由于太阳辐照度变化受诸多因子影响,其不确定性仍然给光伏发电并网带来了极大挑战。鉴于门限单元(gated recurrent unit,GRU)神经元特殊的门结构对周期性变化的数据结... 随着新能源技术的不断发展,光伏发电已逐渐成为电力供应的重要来源。由于太阳辐照度变化受诸多因子影响,其不确定性仍然给光伏发电并网带来了极大挑战。鉴于门限单元(gated recurrent unit,GRU)神经元特殊的门结构对周期性变化的数据结构具有较好的学习能力,建立了一种基于GRU神经网络的辐照度短期预测模型。对历史气象数据及卫星数据进行主成分分析(principal component analysis,PCA)降维处理后输入上述模型,实现对太阳辐照度的短期预测,从而提高太阳辐照度的预测精度。对同一模型不同预测时长进行对比,得到24 h预测效果最好,其均方根误差(root-mean-square error,RMSE)仅为0.356。将该模型预测的结果与传统的反向传播(back propagation,BP)神经网络的预测结果进行对比,RMSE减少了34%。最后利用晴空指数划分不同的天气情况分别对GRU预测结果误差进行分析研究,探究了误差产生的原因。 展开更多
关键词 太阳辐照度预测 PCA降维 gru神经网络 晴空指数
下载PDF
结合深度学习和分解算法的股票价格预测研究 被引量:16
8
作者 张倩玉 严冬梅 韩佳彤 《计算机工程与应用》 CSCD 北大核心 2021年第5期56-64,共9页
针对股票价格预测问题,实现对非平稳、非线性股票价格序列的预测,提出一种结合深度学习和分解算法的股票价格预测模型。该模型引入自适应噪声的完整集成经验模态分解(CEEMDAN)算法提取股票价格时间序列在时间尺度上的特征,利用注意力机... 针对股票价格预测问题,实现对非平稳、非线性股票价格序列的预测,提出一种结合深度学习和分解算法的股票价格预测模型。该模型引入自适应噪声的完整集成经验模态分解(CEEMDAN)算法提取股票价格时间序列在时间尺度上的特征,利用注意力机制捕获输入特征参数的权重并结合门控循环单元(GRU)网络进行股票价格预测。实验对苹果、贵州茅台等国内外四家公司的股票价格和上证指数进行预测,结果表明与RNN、LSTM等模型相比,所提模型能有效减少预测误差,提高模型拟合能力。 展开更多
关键词 股票预测 注意力机制 门控循环单元(gru)神经网络 信号分解算法
下载PDF
基于Bagging的双向GRU集成神经网络短期负荷预测 被引量:12
9
作者 王康 张智晟 +1 位作者 撖奥洋 于立涛 《电力系统及其自动化学报》 CSCD 北大核心 2021年第10期24-30,共7页
为了提高电力系统短期负荷的预测精度,提出了一种基于Bagging算法的双向加权门控循环单元GRU(gated recurrent unit)集成神经网络短期负荷预测模型。对双向门控循环单元BiGRU(bidirectional gated recurrent unit)神经网络两个方向的隐... 为了提高电力系统短期负荷的预测精度,提出了一种基于Bagging算法的双向加权门控循环单元GRU(gated recurrent unit)集成神经网络短期负荷预测模型。对双向门控循环单元BiGRU(bidirectional gated recurrent unit)神经网络两个方向的隐含层状态进行加权求和处理,使得对负荷点的预测可以同时考虑过去和未来的信息。通过Bagging算法对双向加权GRU神经网络进行集成处理来提高模型的泛化能力。按照某地区真实负荷数据,并与反向传播BP(back propagation)神经网络、长短期记忆LSTM(long short-term memory)神经网络、单向GRU神经网络和双向GRU神经网络进行对比可以得出,所提模型有更好的预测效果。 展开更多
关键词 短期负荷预测 双向加权门控循环单元神经网络 BAGGING算法 电力系统 预测精度
下载PDF
基于MIPCA与GRU网络的光伏出力短期预测方法 被引量:11
10
作者 周恒俊 王璇 +1 位作者 王志远 许若冰 《电力系统及其自动化学报》 CSCD 北大核心 2020年第9期55-62,共8页
高精度的光伏出力预测有助于电力系统的安全经济运行和电力资源的协调利用。本文提出了一种新颖的基于互信息矩阵主成分分析与门控循环单元网络的光伏出力短期预测方法。此方法为解决传统主成分分析只能衡量特征变量间线性关系的局限性... 高精度的光伏出力预测有助于电力系统的安全经济运行和电力资源的协调利用。本文提出了一种新颖的基于互信息矩阵主成分分析与门控循环单元网络的光伏出力短期预测方法。此方法为解决传统主成分分析只能衡量特征变量间线性关系的局限性,将互信息引入主成分分析中以优化主成分分析结果和预测模型的输入变量。结合基于互信息的主成分分析结果及历史光伏出力数据,构建了有更强适用性的门控循环单元预测模型。此外,为更有效地训练模型参数并防止过拟合现象,在优选模型结构的同时引入Adam算法和Dropout技术以进一步优化光伏出力预测模型。算例分析表明,本文所提预测方法较其他方法能更有效地进行特征分析、更准确地把握光伏出力的变化规律,表现出了更高的预测精度。 展开更多
关键词 光伏出力预测 互信息 主成分分析 门控循环单元神经网络
下载PDF
基于CS-GRU模型的短期负荷预测方法研究 被引量:9
11
作者 杨海柱 江昭阳 +1 位作者 李梦龙 张鹏 《传感器与微系统》 CSCD 北大核心 2022年第9期54-57,共4页
针对门控循环单元(GRU)神经网络进行电力负荷预测时,其超参数选取困难等问题,提出一种布谷鸟搜索(CS)算法和GRU相结合的预测方法。研究发现,GRU的预测精度与超参数的设定有关,通过CS算法寻优GRU的超参数,包括迭代次数、学习率和隐含层... 针对门控循环单元(GRU)神经网络进行电力负荷预测时,其超参数选取困难等问题,提出一种布谷鸟搜索(CS)算法和GRU相结合的预测方法。研究发现,GRU的预测精度与超参数的设定有关,通过CS算法寻优GRU的超参数,包括迭代次数、学习率和隐含层节点数,节省了超参数选取时间,进一步提高了GRU的预测精度。最后,以河南某地区实例数据为例,在Python的TensorFlow框架下验证了预测方法的有效性。 展开更多
关键词 布谷鸟搜索算法 门控循环单元神经网络 迭代次数 学习率 隐含层节点数
下载PDF
耦合人工神经网络模型在径流预测中的应用综述
12
作者 王语浠 曹青 SHAO Quanxi 《海洋气象学报》 2024年第3期152-161,共10页
人工神经网络(artificial neural network,ANN)模型耦合其他模型或优化算法在径流预测中的应用逐渐增多。从人工神经网络模型与物理模型的耦合、多人工神经网络模型的耦合、分解技术与机器学习方法的耦合、人工神经网络模型与智能优化... 人工神经网络(artificial neural network,ANN)模型耦合其他模型或优化算法在径流预测中的应用逐渐增多。从人工神经网络模型与物理模型的耦合、多人工神经网络模型的耦合、分解技术与机器学习方法的耦合、人工神经网络模型与智能优化算法的耦合4个方面进行系统梳理和总结,阐述提高预测精度的原因及各方法的优势。同时,提出当前研究中存在的问题并进行展望,可为径流预测和水资源管理提供支持。 展开更多
关键词 径流预测 反向传播(BP)神经网络模型 循环神经网络(RNN)模型 长短期记忆(LSTM)神经网络模型 门控循环单元(gru)神经网络模型 卷积神经网络(CNN)模型
下载PDF
基于门控循环单元神经网络的箱型梁结构裂纹损伤检测方法 被引量:6
13
作者 骆撷冬 马栋梁 +1 位作者 张松林 王德禹 《中国舰船研究》 CSCD 北大核心 2022年第4期194-203,共10页
[目的]随着智能船舶的发展,传统裂纹损伤检测方法已难以满足检测需求,为此,提出一种基于门控循环单元(GRU)神经网络的箱型梁结构裂纹损伤实时检测方法。[方法]通过基于Python语言的ABAQUS二次开发技术,建立箱型梁裂纹损伤模型,计算其在... [目的]随着智能船舶的发展,传统裂纹损伤检测方法已难以满足检测需求,为此,提出一种基于门控循环单元(GRU)神经网络的箱型梁结构裂纹损伤实时检测方法。[方法]通过基于Python语言的ABAQUS二次开发技术,建立箱型梁裂纹损伤模型,计算其在动态高斯白噪声激励下的加速度响应。通过数据裁剪技术扩充原始数据之后生成数据集,并考虑噪声的影响。建立基于GRU的箱型梁裂纹损伤检测模型,直接将加速度响应数据集作为输入,以最小损失函数值为目标来训练模型,并与基于小波包变换的多层感知机神经网络(WPT-MLP)进行对比。[结果]结果显示,所提出的GRU模型在损伤位置和损伤长度的检测上相比WPT-MLP检测精度更高,对噪声的敏感程度更低,且在对损伤位置的近似预测方面精度也较高。[结论]研究证明了GRU神经网络在包含多个板的箱型梁结构裂纹损伤检测中的适用性。 展开更多
关键词 门控循环单元神经网络 箱型梁 裂纹检测 噪声
下载PDF
基于HAN的双通道复合模型的文本情感分类 被引量:6
14
作者 李辉 黄钰杰 李金秋 《传感器与微系统》 CSCD 北大核心 2021年第8期121-125,共5页
针对单一的神经网络模型结构简单、传统的注意力模型无法有效提取层次化的文本特征的问题,提出了一种基于HAN的双通道复合模型的文本情感分类。首先,在一个通道上使用双向门限循环(GRU)神经网络提取序列化信息,并引入层次化注意力网络(H... 针对单一的神经网络模型结构简单、传统的注意力模型无法有效提取层次化的文本特征的问题,提出了一种基于HAN的双通道复合模型的文本情感分类。首先,在一个通道上使用双向门限循环(GRU)神经网络提取序列化信息,并引入层次化注意力网络(HAN)学习序列层次化文本信息。其次,在另一通道中借助分解卷积神经网络(CNN)获取局部文本特征,结合HAN学习深层次特征信息。最后,将两个通道进行融合,丰富特征向量,优化文本情感分类效果,提高模型的准确率。在3组中文数据集上进行多组对比实验,本文模型准确率分别达到92.06%,91.08%,92.71%,证明提出模型比单一通道模型表现更出色,使用层次化注意力网络比传统的注意力网络效果更好。 展开更多
关键词 卷积神经网络 门限循环神经网络 层次化注意力网络 情感分析
下载PDF
基于RF-GRU风速预测的风电MPPT控制 被引量:6
15
作者 金俊喆 武鹏 +2 位作者 董祥祥 葛传九 陈蓓 《传感器与微系统》 CSCD 北大核心 2021年第5期38-41,共4页
针对风能最大功率点跟踪(MPPT)的问题,提出了一种基于风速预测的改进粒子群优化(IPSO)算法的MPPT控制策略。该策略包含两部分:基于门控循环单元(GRU)神经网络的风速预测和IPSO算法的MPPT控制。首先,建立GRU风速预测模型,并通过随机森林(... 针对风能最大功率点跟踪(MPPT)的问题,提出了一种基于风速预测的改进粒子群优化(IPSO)算法的MPPT控制策略。该策略包含两部分:基于门控循环单元(GRU)神经网络的风速预测和IPSO算法的MPPT控制。首先,建立GRU风速预测模型,并通过随机森林(RF)算法进行特征提取,作为模型的输入,实现风速预测;然后,以预测的风速作为基础,从粒子群优化(PSO)算法的粒子分布、种群规模、惯性权重等多个方面进行优化,实现风能MPPT;最后,使用MATLAB/SIMULINK软件对所提策略进行仿真。仿真结果表明:基于RF-GRU预测的风速较为精确,基于风速预测的IPSO算法可以快速搜索到最大功率点,避免了局部最优和在风速突变时最大功率点滑落的问题。 展开更多
关键词 最大功率点跟踪(MPPT) 随机森林 门控循环单元(gru)神经网络 风速预测 粒子群优化算法
下载PDF
基于OVMD-KPCA-RTH-GRU的短期光伏发电功率预测
16
作者 王红徐 严新军 +2 位作者 夏庆成 刘佳琪 王雪虎 《水力发电》 CAS 2024年第9期98-103,共6页
针对光伏发电功率的随机性、波动性和非线性问题,提出了一种结合经红尾鵟(RTH)算法优化的变分模态分解(VMD)、核主成分分析(KPCA)和经RTH算法优化的门控循环单元(GRU)神经网络的光伏发电功率预测模型。首先,使用RTH算法对VMD和GRU神经... 针对光伏发电功率的随机性、波动性和非线性问题,提出了一种结合经红尾鵟(RTH)算法优化的变分模态分解(VMD)、核主成分分析(KPCA)和经RTH算法优化的门控循环单元(GRU)神经网络的光伏发电功率预测模型。首先,使用RTH算法对VMD和GRU神经网络的5个超参数进行优化;接着,应用优化后的VMD方法分解原始数据,以减少光伏数据的波动性和随机性;然后,采用KPCA方法降低数据维度,消除冗余;最后,利用经RTH优化的GRU神经网络模型进行时序建模。通过分析新疆某光伏电站的历史发电数据,并与GRNN、LSTM、GRU以及OVMD-GRU、OVMD-KPCA-GRU模型相比较,本模型的拟合优度高达98.96%,显示出更高的预测精度。 展开更多
关键词 变分模态分解 核主成分分析 红尾鵟优化算法 门控循环神经网络 光伏功率预测
下载PDF
桥梁结构挠度-温度-车辆荷载监测数据相关性模型 被引量:1
17
作者 鞠翰文 邓扬 李爱群 《振动与冲击》 EI CSCD 北大核心 2023年第6期79-89,共11页
运营状态下桥梁结构挠度、车载和温度的相关性复杂,高精度的车载、温度与挠度相关性模型对桥梁结构健康监测具有重要意义。为此,提出了基于门控循环单元(gated recurrent unit,GRU)神经网络的桥梁挠度监测数据建模方法。为解决车辆荷载... 运营状态下桥梁结构挠度、车载和温度的相关性复杂,高精度的车载、温度与挠度相关性模型对桥梁结构健康监测具有重要意义。为此,提出了基于门控循环单元(gated recurrent unit,GRU)神经网络的桥梁挠度监测数据建模方法。为解决车辆荷载监测数据在时域内离散分布的问题,提出了基于挠度影响线的车载影响参数计算方法;在此基础上建立了基于GRU神经网络的车载影响参数、环境温度和桥梁挠度相关性模型。以一座悬索桥为例,分别建立了短时段、中长时段的相关性模型,考察了相关性模型对加劲梁挠度的预测能力,并利用相关性模型提出了一种温度和车载挠度分量的分离方法。悬索桥实例研究表明:短时段相关性模型的挠度预测值与实时监测数据基本吻合,而中长时段相关性模型则对一定时间窗口内的挠度极值具有精确的预测能力;采用相关性模型计算得到的温度与车载挠度分量与小波分解结果具有良好的一致性。 展开更多
关键词 结构健康监测 门控循环单元(gru)神经网络 相关性模型 挠度 车辆荷载 环境温度
下载PDF
基于多信息融合与GRU的轴承剩余寿命预测 被引量:1
18
作者 曹胜博 徐彦伟 +1 位作者 颉潭成 王浏洋 《机床与液压》 北大核心 2023年第24期164-168,196,共6页
为解决单一传感器信号易受干扰且能提取的退化信息有限,导致轴承剩余寿命预测精度低的问题,提出一种基于双通道信息融合与门控单元(GRU)神经网络的轴承剩余寿命预测方法。进行轴承寿命试验时,在振动传感器采集信号的基础上增加声发射传... 为解决单一传感器信号易受干扰且能提取的退化信息有限,导致轴承剩余寿命预测精度低的问题,提出一种基于双通道信息融合与门控单元(GRU)神经网络的轴承剩余寿命预测方法。进行轴承寿命试验时,在振动传感器采集信号的基础上增加声发射传感器,弥补单一信号易受干扰的缺点;使用卷积神经网络自动挖掘出包含轴承退化信息的特征,避免传统算法过分依赖专家判断的弊端;通过归一化处理对信息进行融合;最后使用这些数据训练GRU神经网络,利用训练好的门控单元神经网络预测高铁牵引电机轴承的剩余寿命。结果表明:相比单通道数据,双通道数据训练出的门控神经网络模型的预测结果更为准确;门控单元神经网络相比长短时记忆神经网络有更高的轴承寿命预测精确度。 展开更多
关键词 退化特征 信息融合 剩余寿命预测 门控单元神经网络
下载PDF
基于SSA-GRU神经网络的超短期风电功率预测 被引量:1
19
作者 赵全明 李珂 +1 位作者 王笑欢 杨天意 《传感器与微系统》 CSCD 北大核心 2023年第11期151-155,共5页
针对风电数据的复杂和不确定性,为了进一步提高输出功率预测的精度和鲁棒性,采用深层神经网络技术,提出了一种基于参数寻优的麻雀搜索算法—门控循环单元(SSA-GRU)超短期混合风电功率预测模型。首先,对复杂的风电数据进行冗余变量清洗,... 针对风电数据的复杂和不确定性,为了进一步提高输出功率预测的精度和鲁棒性,采用深层神经网络技术,提出了一种基于参数寻优的麻雀搜索算法—门控循环单元(SSA-GRU)超短期混合风电功率预测模型。首先,对复杂的风电数据进行冗余变量清洗,通过多个单一神经网络在风电数据训练集上的预测性能比较,GRU神经网络实现了对输出功率较高精度的预测,同时相较其他预测模型提升了效率;然后,采用SSA对整个模型进行参数最优值搜索,将原有单一模型加入优化迭代组成混合算法模型,改进了模型参数设置不确定性带来的对预测精度的影响,SSA较快的收敛速度也适用于风电类大量样本的训练与预测;最后,基于国外某风电场数据集实例验证了本文所提模型的可行性和有效性。 展开更多
关键词 风电功率预测 麻雀搜索算法 门控循环单元神经网络 混合模型
下载PDF
基于改进LMD与GRU网络的短期燃气负荷预测 被引量:4
20
作者 张彤 徐晓钟 +1 位作者 王晓霞 杨超 《计算机系统应用》 2019年第6期29-37,共9页
针对燃气负荷数据非线性、非平稳性的特点,本文提出一种基于改进的LMD算法与GRU神经网络的组合预测模型.模型首先利用改进后的LMD算法对燃气负荷数据进行序列分解,改进的LMD方法采用分段牛顿插值法代替传统的滑动平均值法来获得局部均... 针对燃气负荷数据非线性、非平稳性的特点,本文提出一种基于改进的LMD算法与GRU神经网络的组合预测模型.模型首先利用改进后的LMD算法对燃气负荷数据进行序列分解,改进的LMD方法采用分段牛顿插值法代替传统的滑动平均值法来获得局部均值函数和包络估计函数,改善了传统LMD方法存在的过平滑问题.之后,再将得到的若干PF分量进行小波阈值去噪处理,获得有效的分量数据.最后,利用GRU神经网络分别预测各分量值,将它们相加得到最终的负荷预测值.仿真实验表明,提出的方法与单个GRU神经网络以及结合传统LMD算法的GRU网络相比,预测精度更高. 展开更多
关键词 牛顿插值法 LMD算法 小波阈值去噪 gru神经网络 燃气负荷预测
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部