In their seminal papers Hanahan and Weinberg described oncogenic processes a normal cell undergoes to be transformed into a cancer cell.The functions of ion channels in the gastrointestinal(GI)tract influence a variet...In their seminal papers Hanahan and Weinberg described oncogenic processes a normal cell undergoes to be transformed into a cancer cell.The functions of ion channels in the gastrointestinal(GI)tract influence a variety of cellular processes,many of which overlap with these hallmarks of cancer.In this review we focus on the roles of the calcium(Ca^2+),sodium(Na^+),potassium(K^+),chloride(Cl^-)and zinc(Zn^2+)transporters in GI cancer,with a special emphasis on the roles of the KCNQ1 K+channel and CFTR Cl-channel in colorectal cancer(CRC).Ca^2+is a ubiquitous second messenger,serving as a signaling molecule for a variety of cellular processes such as control of the cell cycle,apoptosis,and migration.Various members of the TRP superfamily,including TRPM8,TRPM7,TRPM6 and TRPM2,have been implicated in GI cancers,especially through overexpression in pancreatic adenocarcinomas and down-regulation in colon cancer.Voltage-gated sodium channels(VGSCs)are classically associated with the initiation and conduction of action potentials in electrically excitable cells such as neurons and muscle cells.The VGSC NaV1.5 is abundantly expressed in human colorectal CRC cell lines as well as being highly expressed in primary CRC samples.Studies have demonstrated that conductance through NaV1.5 contributes significantly to CRC cell invasiveness and cancer progression.Zn2+transporters of the ZIP/SLC39A and ZnT/SLC30A families are dysregulated in all major GI organ cancers,in particular,ZIP4 up-regulation in pancreatic cancer(PC).More than 70 K+channel genes,clustered in four families,are found expressed in the GI tract,where they regulate a range of cellular processes,including gastrin secretion in the stomach and anion secretion and fluid balance in the intestinal tract.Several distinct types of K+channels are found dysregulated in the GI tract.Notable are hERG1 upregulation in PC,gastric cancer(GC)and CRC,leading to enhanced cancer angiogenesis and invasion,and KCNQ1 down-regulation in CRC,where KCNQ1 expression is associated with enha展开更多
Nuclear factor kappa B(NF-κB) has an established role in the regulation of innate immunity and inflammation.NF-κB is also involved in critical mechanisms connecting inflammation and cancer development.Recent investi...Nuclear factor kappa B(NF-κB) has an established role in the regulation of innate immunity and inflammation.NF-κB is also involved in critical mechanisms connecting inflammation and cancer development.Recent investigations suggest that the NF-κB signaling cascade may be the central mediator of gastrointestinal malignancies including esophageal,gastric and colorectal cancers.This review will explore NF-κB's function in inflammation-associated gastrointestinal malignancies,highlighting its oncogenic contribution to each step of carcinogenesis.NF-κB's role in the inflammation-to-carcinoma sequence in gastrointestinal malignancies warrants stronger emphasis upon targeting this pathway in achieving greater therapeutic efficacy.展开更多
Epithelial-to-mesenchymal transition(EMT) represents conversion of an epithelial cell in an elongated cell with mesenchymal phenotype, which can occur in physiologic and pathologic processes such as embryogenesis(type...Epithelial-to-mesenchymal transition(EMT) represents conversion of an epithelial cell in an elongated cell with mesenchymal phenotype, which can occur in physiologic and pathologic processes such as embryogenesis(type 1 EMT), wound healing and/or fibrosis(type 2 EMT) and malignant tumors(type 3 EMT). The proliferation rate, metastasizing and recurrence capacity, as also the individualized response at chemotherapics, in both epithelial and mesenchymal malignant tumors is known to be influenced by reversible switch between EMT and mesenchymal-to-epithelial transition(MET). Although much research work has already been done in these fields, the specific molecular pathways of EMT, relating to the tumor type and tumor localization, are yet to be elucidated. In this paper, based on the literature and personal experience of the authors, an update in the field of EMT vs MET in epithelial and mesenchymal tumors is presented. The authors tried to present the latest data about the particularities of these processes, and also of the so-called endothelialto-mesenchymal transition, based on tumor location. The EMT-angiogenesis link is discussed as a possible valuable parameter for clinical follow-up and targeted therapeutic oncologic management. The paper begins with presentation of the basic aspects of EMT, its classification and assessment possibilities, and concludes with prognostic and therapeutic perspectives. The particularities of EMT and MET in gastric and colorectal carcinomas, pancreatic cancer, hepatocellular and cholangiocarcinomas, and lung, breast and prostate cancers, respectively in sarcomas and gastrointestinal stromal tumors are presented in detail.展开更多
基金grants from the National Cancer Institute(NIH R15CA195061A-01)Whiteside Institute for Clinical Research+3 种基金Essentia Health SystemsMezin-Koats Colorectal Cancer FoundationRandy Shaver Cancer Research and Community Fundthe University of Minnesota Masonic Cancer Center
文摘In their seminal papers Hanahan and Weinberg described oncogenic processes a normal cell undergoes to be transformed into a cancer cell.The functions of ion channels in the gastrointestinal(GI)tract influence a variety of cellular processes,many of which overlap with these hallmarks of cancer.In this review we focus on the roles of the calcium(Ca^2+),sodium(Na^+),potassium(K^+),chloride(Cl^-)and zinc(Zn^2+)transporters in GI cancer,with a special emphasis on the roles of the KCNQ1 K+channel and CFTR Cl-channel in colorectal cancer(CRC).Ca^2+is a ubiquitous second messenger,serving as a signaling molecule for a variety of cellular processes such as control of the cell cycle,apoptosis,and migration.Various members of the TRP superfamily,including TRPM8,TRPM7,TRPM6 and TRPM2,have been implicated in GI cancers,especially through overexpression in pancreatic adenocarcinomas and down-regulation in colon cancer.Voltage-gated sodium channels(VGSCs)are classically associated with the initiation and conduction of action potentials in electrically excitable cells such as neurons and muscle cells.The VGSC NaV1.5 is abundantly expressed in human colorectal CRC cell lines as well as being highly expressed in primary CRC samples.Studies have demonstrated that conductance through NaV1.5 contributes significantly to CRC cell invasiveness and cancer progression.Zn2+transporters of the ZIP/SLC39A and ZnT/SLC30A families are dysregulated in all major GI organ cancers,in particular,ZIP4 up-regulation in pancreatic cancer(PC).More than 70 K+channel genes,clustered in four families,are found expressed in the GI tract,where they regulate a range of cellular processes,including gastrin secretion in the stomach and anion secretion and fluid balance in the intestinal tract.Several distinct types of K+channels are found dysregulated in the GI tract.Notable are hERG1 upregulation in PC,gastric cancer(GC)and CRC,leading to enhanced cancer angiogenesis and invasion,and KCNQ1 down-regulation in CRC,where KCNQ1 expression is associated with enha
文摘Nuclear factor kappa B(NF-κB) has an established role in the regulation of innate immunity and inflammation.NF-κB is also involved in critical mechanisms connecting inflammation and cancer development.Recent investigations suggest that the NF-κB signaling cascade may be the central mediator of gastrointestinal malignancies including esophageal,gastric and colorectal cancers.This review will explore NF-κB's function in inflammation-associated gastrointestinal malignancies,highlighting its oncogenic contribution to each step of carcinogenesis.NF-κB's role in the inflammation-to-carcinoma sequence in gastrointestinal malignancies warrants stronger emphasis upon targeting this pathway in achieving greater therapeutic efficacy.
基金The University of Medicine and Pharmacy of Tirgu-Mures,Romania,team research projects frame:UMFTGMPO-CC-02-F01-No 19/2014
文摘Epithelial-to-mesenchymal transition(EMT) represents conversion of an epithelial cell in an elongated cell with mesenchymal phenotype, which can occur in physiologic and pathologic processes such as embryogenesis(type 1 EMT), wound healing and/or fibrosis(type 2 EMT) and malignant tumors(type 3 EMT). The proliferation rate, metastasizing and recurrence capacity, as also the individualized response at chemotherapics, in both epithelial and mesenchymal malignant tumors is known to be influenced by reversible switch between EMT and mesenchymal-to-epithelial transition(MET). Although much research work has already been done in these fields, the specific molecular pathways of EMT, relating to the tumor type and tumor localization, are yet to be elucidated. In this paper, based on the literature and personal experience of the authors, an update in the field of EMT vs MET in epithelial and mesenchymal tumors is presented. The authors tried to present the latest data about the particularities of these processes, and also of the so-called endothelialto-mesenchymal transition, based on tumor location. The EMT-angiogenesis link is discussed as a possible valuable parameter for clinical follow-up and targeted therapeutic oncologic management. The paper begins with presentation of the basic aspects of EMT, its classification and assessment possibilities, and concludes with prognostic and therapeutic perspectives. The particularities of EMT and MET in gastric and colorectal carcinomas, pancreatic cancer, hepatocellular and cholangiocarcinomas, and lung, breast and prostate cancers, respectively in sarcomas and gastrointestinal stromal tumors are presented in detail.