We study a generalized nonlinear Boussinesq equation by introducing a proper functional and constructing the variational iteration sequence with suitable initial approximation. The approximate solution is obtained for...We study a generalized nonlinear Boussinesq equation by introducing a proper functional and constructing the variational iteration sequence with suitable initial approximation. The approximate solution is obtained for the solitary wave of the Boussinesq equation with the variational iteration method.展开更多
We present an experimental study on coherent beam combining of three watt-level fiber amplifiers using a stochas- tic parallel gradient descent (SPGD) algorithm. Phase controlling is performed by running the SPGD al...We present an experimental study on coherent beam combining of three watt-level fiber amplifiers using a stochas- tic parallel gradient descent (SPGD) algorithm. Phase controlling is performed by running the SPGD algorithm on a digital-signal-processor (DSP) chip with a voltage updating rate of 16500 times per second. Energy encircled in the target pinhole is 2.62 times more than that in an open loop. The combining efficiency is as high as 87%.展开更多
We present a novel and effective method for controlling epidemic spreading on complex networks, especially on scale-free networks. The proposed strategy is performed by deleting edges according to their significances ...We present a novel and effective method for controlling epidemic spreading on complex networks, especially on scale-free networks. The proposed strategy is performed by deleting edges according to their significances (the significance of an edge is defined as the product of the degrees of two nodes of this edge). In contrast to other methods, e.g., random immunization, proportional immunization, targeted immunization, acquaintance immunization and so on, which mainly focus on how to delete nodes to realize the control of epidemic spreading on complex networks, our method is more effective in realizing the control of epidemic spreading on complex networks, moreover, such a method can better retain the integrity of complex networks.展开更多
An approximate homotopy direct reduction method is proposed and applied to two perturbed modified Korteweg- de Vries (mKdV) equations with fourth-order dispersion and second-order dissipation. The similarity reducti...An approximate homotopy direct reduction method is proposed and applied to two perturbed modified Korteweg- de Vries (mKdV) equations with fourth-order dispersion and second-order dissipation. The similarity reduction equations are derived to arbitrary orders. The method is valid not only for single soliton solutions but also for the Painlevd Ⅱ waves and periodic waves expressed by Jacobi elliptic functions for both fourth-order dispersion and second-order dissipation. The method is also valid for strong perturbations.展开更多
Hypersphere World-Universe Model (WUM) envisions Matter carried from Universe into World from fourth spatial dimension by Dark Matter Particles (DMPs). Luminous Matter is byproduct of Dark Matter (DM) annihilation. WU...Hypersphere World-Universe Model (WUM) envisions Matter carried from Universe into World from fourth spatial dimension by Dark Matter Particles (DMPs). Luminous Matter is byproduct of Dark Matter (DM) annihilation. WUM introduces Dark Epoch (spanning from Beginning of World for 0.4 billion years) when only DMPs existed, and Luminous Epoch (ever since for 13.8 billion years). Big Bang discussed in standard cosmological model is, in our view, transition from Dark Epoch to Luminous Epoch due to Rotational Fission of Overspinning DM Supercluster’s Cores and annihilation of DMPs. WUM solves a number of physical problems in contemporary Cosmology and Astrophysics through DMPs and their interactions: Angular Momentum problem in birth and subsequent evolution of Galaxies and Extrasolar systems—how do they obtain it;Fermi Bubbles—two large structures in gamma-rays and X-rays above and below Galactic center;Mysterious Star KIC 8462852 with irregular dimmings;Coronal Heating problem in solar physics—temperature of Sun’s corona exceeding that of photosphere by millions of degrees;Cores of Sun and Earth rotating faster than their surfaces;Diversity of Gravitationally-Rounded Objects in Solar system and their Internal Heat;Lightning Initiation problem—electric fields observed inside thunderstorms are not sufficient to initiate sparks;Terrestrial Gamma-Ray Flashes—bursts of high energy X-rays and gamma rays emanating from Earth. Model makes predictions pertaining to Masses of DMPs, proposes New Types of their Interactions. WUM reveals Inter-Connectivity of Primary Cosmological Parameters and calculates their values, which are in good agreement with the latest results of their measurements.展开更多
The beam quality of a coherent fiber laser array often suffers from the low fill factor of the Gaussian laser array. One simple and effective approach to improve the fill factor is to truncate the array element proper...The beam quality of a coherent fiber laser array often suffers from the low fill factor of the Gaussian laser array. One simple and effective approach to improve the fill factor is to truncate the array element properly. An analytical expression for far-field intensity distribution of a truncated coherent fiber laser array is derived. Optimal truncation of the element beam in different coherent fiber laser arrays is obtained by using energy encircled in the far-field central-lobe as the beam quality criterion. By optimal truncation, energy encircled in the central-lobe can be 97% compared with the ideal case. The shift in optimal truncation parameter in the case of phase noise is also analyzed.展开更多
Coherent beam combination of three W-level fiber amplifiers with multi-dithering technique is demonstrated. The multi-dithering technique is used for phase control in two channels. In the experiment, two channels are ...Coherent beam combination of three W-level fiber amplifiers with multi-dithering technique is demonstrated. The multi-dithering technique is used for phase control in two channels. In the experiment, two channels are modulated by sine wave with 70 kHz and 100 kHz respectively, and two regular commercial DSP lock-in amplifiers and an industrial computer are used for electric signal processing in the feedback loop. The fringe contrast is advanced from 12% to 81%, and 78% coherent combination efficiency is obtained when the feedback loop is closed.展开更多
Based on a new approach for designing glassy alloy compositions, bulk Al-based alloys with good glass-forming ability (GFA) are synthesized. The cast Al86Si0.5Ni4.06Co2.94 Y6Sc0.5 rod with a diameter of i mm shows a...Based on a new approach for designing glassy alloy compositions, bulk Al-based alloys with good glass-forming ability (GFA) are synthesized. The cast Al86Si0.5Ni4.06Co2.94 Y6Sc0.5 rod with a diameter of i mm shows almost fully amorphous structure besides about 5% fcc-Al nucleated in the center of the rod. The bulk alloy with high Al concentration exhibits an ultrahigh yield strength of 1.18 GPa and maximum strength of 1.27 GPa as well as an obvious plastic strain of about 2.4% during compressive deformation. This light Al-based alloy with good GFA and mechanical properties is promising as a new high specific strength material with good deformability.展开更多
A highly sensitive all-optical atomic magnetometer based on the magnetooptical effect which uses the advanced technique of single laser beam detection is reported and demonstrated experimentally. A sensitivity of 0.5p...A highly sensitive all-optical atomic magnetometer based on the magnetooptical effect which uses the advanced technique of single laser beam detection is reported and demonstrated experimentally. A sensitivity of 0.5pT/Hz^1/2 is obtained by analyzing the magnetic noise spectrum, which exceeds that of most traditional magnetometers. This kind of atomic magnetometer is very compact, has a low power consumption, and has a high theoretical sensitivity limit, which make it suitable for many applications.展开更多
We demonstrate a scalable architecture for coherent combining of pulsed fiber ring lasers based on mutual injection and direct phase modulation. By direct phase modulation in the common arm of two ring lasers, synchro...We demonstrate a scalable architecture for coherent combining of pulsed fiber ring lasers based on mutual injection and direct phase modulation. By direct phase modulation in the common arm of two ring lasers, synchronous pulsed lasers can be generated and coherent combining of the two synchronous lasers is obtained. Two pulsed fiber ring lasers are coherently combined with 0.55μJ pulse energy and 10 μs pulse duration at a repetition rate of 27.5 kHz. Experimental results show that the two fiber ring lasers are phase locked with an invariable phase difference of π and have good temporal synchronization and spatial coherence. The combining efficiency of the two pulsed fiber laser reaches 90% and the fringe contrast is larger than 40%. Neither active phase control nor polarization control is used in our experiment and this method can be extended to combine more beams and higher repetition rate scaling up to higher power.展开更多
We show that recently multi-messenger astronomy has provided compelling evidence that the bulk of high energy cosmic rays (CRs) are produced by highly relativistic narrow jets of plasmoids launched in core collapse of...We show that recently multi-messenger astronomy has provided compelling evidence that the bulk of high energy cosmic rays (CRs) are produced by highly relativistic narrow jets of plasmoids launched in core collapse of stripped-envelope massive stars to neutron stars and stellar mass black holes. Such events produce also a visible GRB if the jet happens to point in our direction. This has been long advocated by the cannon ball (CB) model of high energy CRs and GRBs, but the evidence has been provided only recently by what were widely believed to be unrelated discoveries. They include the very recent discovery of a knee around TeV in the energy spectrum of high energy CR electrons, the peak photon energy in the “brightest of all time” GRB221009A, and the failure of IceCube to detect high energy neutrinos from GRBs, including GRB221009A. They were all predicted by the cannonball (CB) model of high energy CRs and GRBs long before they were discovered in observations, despite a negligible probability to occur by chance.展开更多
We construct an ultra-stable external-cavity diode laser via modulation transfer spectroscopy referencing on a hyperfine component of the ST Rb D2 lines at 780 nm. The Doppler-free dispersion-like modulation transfer ...We construct an ultra-stable external-cavity diode laser via modulation transfer spectroscopy referencing on a hyperfine component of the ST Rb D2 lines at 780 nm. The Doppler-free dispersion-like modulation transfer signal is obtained with high signal-to-noise-ratio. The instability of the laser frequency is measured by beating with an optical frequency comb which is phase-locked to an ultra-stable oven controlled crystal oscillator. The Allan deviation is 3.9 × 10-13 at I s averaging time and 9.8 ×10-14 at 90s averaging time.展开更多
We report a lattice Boltzmann model that can be used to simulate fluid-solid coupling heat transfer in fractal porous media. A numerical simulation is conducted to investigate the temperature evolution under different...We report a lattice Boltzmann model that can be used to simulate fluid-solid coupling heat transfer in fractal porous media. A numerical simulation is conducted to investigate the temperature evolution under different ratios of thermal conductivity of solid matrix of porous media to that of fluid. The accordance of our simulation results with the solutions from the conventional CFD method indicates the feasibility and the reliability for the developed lattice Boltzmann model to reveal the phenomena and rules of fluid-solid coupling heat transfer in complex porous structures.展开更多
Counter propagated write and read lasers can be used to generate non-classical correlated photon pairs in an atomic ensemble. We experimentally investigate how the detuning of the write laser affects the non-classical...Counter propagated write and read lasers can be used to generate non-classical correlated photon pairs in an atomic ensemble. We experimentally investigate how the detuning of the write laser affects the non-classical correlation function between the Stokes photon and the anti-Stokes photon, which are generated via a spontaneous four-wave mixing process using an off-axis configuration in a cold 85 Rb atomic ensemble. The change of the time-resolved second-order correlated function between the Stokes and anti-Stokes photons is presented. The experimental result suggests that a suitable choice of detuning should be considered in such an experiment.展开更多
A new general network model for two complex networks with time-varying delay coupling is presented. Then we investigate its synchronization phenomena. The two complex networks of the model differ in dynamic nodes, the...A new general network model for two complex networks with time-varying delay coupling is presented. Then we investigate its synchronization phenomena. The two complex networks of the model differ in dynamic nodes, the number of nodes and the coupling connections. By using adaptive controllers, a synchronization criterion is derived. Numerical examples are given to demonstrate the effectiveness of the obtained synchronization criterion. This study may widen the application range of synchronization, such as in chaotic secure communication.展开更多
The displaying condition of strength, phase and polarization states of high-frequency relic gravitational waves (HFRGWs) in electromagnetic (EM) detecting systems is studied. It is shown that the displaying condit...The displaying condition of strength, phase and polarization states of high-frequency relic gravitational waves (HFRGWs) in electromagnetic (EM) detecting systems is studied. It is shown that the displaying condition depends not only on the sensitivity of EM detecting systems and the amplitudes of HFRGWs, but also on the phase, the polarization states of HFRGWs and their matching to the EM detecting systems. In order to display simultaneously the strength, phase and polarization states of the resonant "monochromatic component" of HFRGWs, an important necessary condition is the utilization of two or more different EM detectors.展开更多
Gamma-ray bursts (GRBs) are extremely powerful explosions that have been traditionally classified into two categories: long bursts (LGRBs) with an observed duration T<sub>90 </sub>> 2 s, and short burst...Gamma-ray bursts (GRBs) are extremely powerful explosions that have been traditionally classified into two categories: long bursts (LGRBs) with an observed duration T<sub>90 </sub>> 2 s, and short bursts (SGRBs) with an observed duration T<sub>90</sub> T<sub>90</sub> is the time interval during which 90% of the fluence is detected. LGRBs are believed to emanate from the core-collapse of massive stars, while SGRBs are believed to result from the merging of two compact objects, like two neutron stars. Because LGRBs are produced by the violent death of massive stars, we expect that their redshift distribution should trace the star-formation rate (SFR). The purpose of our study is to investigate the extent to which the redshift distribution of LGRBs follows and reflects the SFR. We use a sample of 370 LGRBs taken from the Swift catalog, and we investigate different models for the LGRB redshift distribution. We also carry out Monte Carlo simulations to check the consistency of our results. Our results indicate that the SFR can describe the LGRB redshift distribution well for high redshift bursts, but it needs an evolution term to fit the distribution well at low redshift.展开更多
This article proposes an explanation for High-Energy Atmospheric phenomena through the frames of Hypersphere World-Universe Model (WUM). In WUM, Terrestrial Gamma-Ray Flashes (TGFs) are, in fact, Gamma-Ray Bursts (GRB...This article proposes an explanation for High-Energy Atmospheric phenomena through the frames of Hypersphere World-Universe Model (WUM). In WUM, Terrestrial Gamma-Ray Flashes (TGFs) are, in fact, Gamma-Ray Bursts (GRBs). The spectra of TGFs at very high energies are explained by Dark Matter particles annihilation in Geocorona. Lightning initiation problem is solved by GRBs that slam into thunderclouds and carve a conductive path through a thunderstorm. We introduce Multiworld consisting of Macro-World, Large-World, Small-World, and Micro-World, characterized by suggested Gravitational, Extremely-Weak, Super-Weak, and Weak interaction respectively. We propose a new model of Ball Lightning formation based on the Dark Matter Core surrounded by electron-positron plasma in the Small-World.展开更多
Hypersphere World-Universe Model (WUM) envisions Matter carried from the Universe into the World from the fourth spatial dimension by Dark Matter Particles (DMPs). Luminous Matter is a byproduct of Dark Matter (DM) se...Hypersphere World-Universe Model (WUM) envisions Matter carried from the Universe into the World from the fourth spatial dimension by Dark Matter Particles (DMPs). Luminous Matter is a byproduct of Dark Matter (DM) self-annihilation. WUM introduces Dark Epoch (spanning from the Beginning of the World for 0.45 billion years) and Luminous Epoch (ever since for 13.77 billion years). Big Bang discussed in Standard Cosmology (SC) is, in our view, transition from Dark Epoch to Luminous Epoch due to Rotational Fission of Overspinning DM Supercluster’s Cores and self-annihilation of DMPs. WUM solves a number of physical problems in SC and Astrophysics through DMPs and their interactions: Angular Momentum problem in birth and subsequent evolution of Galaxies and Extrasolar systems;Fermi Bubbles—two large structures in gamma-rays and X-rays above and below Galactic center;Coronal Heating problem in solar physics—temperature of Sun’s corona exceeding that of photosphere by millions of degrees;Cores of Sun and Earth rotating faster than their surfaces;Diversity of Gravitationally-Rounded objects in Solar system and their Internal Heating. Model makes predictions pertaining to Rest Energies of DMPs, proposes New Type of their Interactions. WUM reveals Inter-Connectivity of Primary Cosmological Parameters and calculates their values, which are in good agreement with the latest results of their measurements.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 40676016 and 40876010, the Knowledge Innovation Project of Chinese Academy of Sciences under Grant No KZCX2-YW-Q03-08, and E-Institutes of Shanghai Municipal Education Commission under Grant No E03004.
文摘We study a generalized nonlinear Boussinesq equation by introducing a proper functional and constructing the variational iteration sequence with suitable initial approximation. The approximate solution is obtained for the solitary wave of the Boussinesq equation with the variational iteration method.
文摘We present an experimental study on coherent beam combining of three watt-level fiber amplifiers using a stochas- tic parallel gradient descent (SPGD) algorithm. Phase controlling is performed by running the SPGD algorithm on a digital-signal-processor (DSP) chip with a voltage updating rate of 16500 times per second. Energy encircled in the target pinhole is 2.62 times more than that in an open loop. The combining efficiency is as high as 87%.
基金Supported by the National Natural Science Foundation of China under Grant Nos 60744003, 10635040 and 10532060, the Specialized Research Fund for the Doctoral Program of Higher Education of China (20060358065), the National Science Fund for Fostering Talents in Basic Science (J0630319), the Foundation of Anhui Education Bureau under Grant No KJ2007A003, and the Natural Science Foundation of Anhui Province under Grant No 070416225.
文摘We present a novel and effective method for controlling epidemic spreading on complex networks, especially on scale-free networks. The proposed strategy is performed by deleting edges according to their significances (the significance of an edge is defined as the product of the degrees of two nodes of this edge). In contrast to other methods, e.g., random immunization, proportional immunization, targeted immunization, acquaintance immunization and so on, which mainly focus on how to delete nodes to realize the control of epidemic spreading on complex networks, our method is more effective in realizing the control of epidemic spreading on complex networks, moreover, such a method can better retain the integrity of complex networks.
基金Supported by the National Natural Science Foundations of China under Grant Nos 10735030, 10475055, 10675065 and 90503006, the National Basic Research Program of China under Grant No 2007CB814800, PCSIRT (IRT0734), the Research Fund of Post- doctoral of China under Grant No 20070410727, and the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No 20070248120.
文摘An approximate homotopy direct reduction method is proposed and applied to two perturbed modified Korteweg- de Vries (mKdV) equations with fourth-order dispersion and second-order dissipation. The similarity reduction equations are derived to arbitrary orders. The method is valid not only for single soliton solutions but also for the Painlevd Ⅱ waves and periodic waves expressed by Jacobi elliptic functions for both fourth-order dispersion and second-order dissipation. The method is also valid for strong perturbations.
文摘Hypersphere World-Universe Model (WUM) envisions Matter carried from Universe into World from fourth spatial dimension by Dark Matter Particles (DMPs). Luminous Matter is byproduct of Dark Matter (DM) annihilation. WUM introduces Dark Epoch (spanning from Beginning of World for 0.4 billion years) when only DMPs existed, and Luminous Epoch (ever since for 13.8 billion years). Big Bang discussed in standard cosmological model is, in our view, transition from Dark Epoch to Luminous Epoch due to Rotational Fission of Overspinning DM Supercluster’s Cores and annihilation of DMPs. WUM solves a number of physical problems in contemporary Cosmology and Astrophysics through DMPs and their interactions: Angular Momentum problem in birth and subsequent evolution of Galaxies and Extrasolar systems—how do they obtain it;Fermi Bubbles—two large structures in gamma-rays and X-rays above and below Galactic center;Mysterious Star KIC 8462852 with irregular dimmings;Coronal Heating problem in solar physics—temperature of Sun’s corona exceeding that of photosphere by millions of degrees;Cores of Sun and Earth rotating faster than their surfaces;Diversity of Gravitationally-Rounded Objects in Solar system and their Internal Heat;Lightning Initiation problem—electric fields observed inside thunderstorms are not sufficient to initiate sparks;Terrestrial Gamma-Ray Flashes—bursts of high energy X-rays and gamma rays emanating from Earth. Model makes predictions pertaining to Masses of DMPs, proposes New Types of their Interactions. WUM reveals Inter-Connectivity of Primary Cosmological Parameters and calculates their values, which are in good agreement with the latest results of their measurements.
文摘The beam quality of a coherent fiber laser array often suffers from the low fill factor of the Gaussian laser array. One simple and effective approach to improve the fill factor is to truncate the array element properly. An analytical expression for far-field intensity distribution of a truncated coherent fiber laser array is derived. Optimal truncation of the element beam in different coherent fiber laser arrays is obtained by using energy encircled in the far-field central-lobe as the beam quality criterion. By optimal truncation, energy encircled in the central-lobe can be 97% compared with the ideal case. The shift in optimal truncation parameter in the case of phase noise is also analyzed.
文摘Coherent beam combination of three W-level fiber amplifiers with multi-dithering technique is demonstrated. The multi-dithering technique is used for phase control in two channels. In the experiment, two channels are modulated by sine wave with 70 kHz and 100 kHz respectively, and two regular commercial DSP lock-in amplifiers and an industrial computer are used for electric signal processing in the feedback loop. The fringe contrast is advanced from 12% to 81%, and 78% coherent combination efficiency is obtained when the feedback loop is closed.
基金Supported by the National Natural Science Foundation of China under Grant Nos 50631010 and 50771006, and the National Basic Research Program of China under Grant No 2007CB613900.
文摘Based on a new approach for designing glassy alloy compositions, bulk Al-based alloys with good glass-forming ability (GFA) are synthesized. The cast Al86Si0.5Ni4.06Co2.94 Y6Sc0.5 rod with a diameter of i mm shows almost fully amorphous structure besides about 5% fcc-Al nucleated in the center of the rod. The bulk alloy with high Al concentration exhibits an ultrahigh yield strength of 1.18 GPa and maximum strength of 1.27 GPa as well as an obvious plastic strain of about 2.4% during compressive deformation. This light Al-based alloy with good GFA and mechanical properties is promising as a new high specific strength material with good deformability.
基金Supported by the National Natural Science Foundation of China under Grant No 10804097), and the National Basic Research Program of China under Grant No 2006CB921403, and the Zhejiang Provincial Qian-Jiang-Ren-Cai Project of China under Grant No 2006R10025.
文摘A highly sensitive all-optical atomic magnetometer based on the magnetooptical effect which uses the advanced technique of single laser beam detection is reported and demonstrated experimentally. A sensitivity of 0.5pT/Hz^1/2 is obtained by analyzing the magnetic noise spectrum, which exceeds that of most traditional magnetometers. This kind of atomic magnetometer is very compact, has a low power consumption, and has a high theoretical sensitivity limit, which make it suitable for many applications.
文摘We demonstrate a scalable architecture for coherent combining of pulsed fiber ring lasers based on mutual injection and direct phase modulation. By direct phase modulation in the common arm of two ring lasers, synchronous pulsed lasers can be generated and coherent combining of the two synchronous lasers is obtained. Two pulsed fiber ring lasers are coherently combined with 0.55μJ pulse energy and 10 μs pulse duration at a repetition rate of 27.5 kHz. Experimental results show that the two fiber ring lasers are phase locked with an invariable phase difference of π and have good temporal synchronization and spatial coherence. The combining efficiency of the two pulsed fiber laser reaches 90% and the fringe contrast is larger than 40%. Neither active phase control nor polarization control is used in our experiment and this method can be extended to combine more beams and higher repetition rate scaling up to higher power.
文摘We show that recently multi-messenger astronomy has provided compelling evidence that the bulk of high energy cosmic rays (CRs) are produced by highly relativistic narrow jets of plasmoids launched in core collapse of stripped-envelope massive stars to neutron stars and stellar mass black holes. Such events produce also a visible GRB if the jet happens to point in our direction. This has been long advocated by the cannon ball (CB) model of high energy CRs and GRBs, but the evidence has been provided only recently by what were widely believed to be unrelated discoveries. They include the very recent discovery of a knee around TeV in the energy spectrum of high energy CR electrons, the peak photon energy in the “brightest of all time” GRB221009A, and the failure of IceCube to detect high energy neutrinos from GRBs, including GRB221009A. They were all predicted by the cannonball (CB) model of high energy CRs and GRBs long before they were discovered in observations, despite a negligible probability to occur by chance.
基金Supported by the National Basic Research Program of China under Grant Nos 2005CB724503, 2006CB921401 and 2006CB921402, and the National Natural Science Foundation of China under Grant Nos 60490280, 10874008 and 10574005.
文摘We construct an ultra-stable external-cavity diode laser via modulation transfer spectroscopy referencing on a hyperfine component of the ST Rb D2 lines at 780 nm. The Doppler-free dispersion-like modulation transfer signal is obtained with high signal-to-noise-ratio. The instability of the laser frequency is measured by beating with an optical frequency comb which is phase-locked to an ultra-stable oven controlled crystal oscillator. The Allan deviation is 3.9 × 10-13 at I s averaging time and 9.8 ×10-14 at 90s averaging time.
基金Supported by the National Natural Science Foundation of China under Grant No 50376063, and the Institute of Engineering Thermophysics, Chinese Academy of Sciences.
文摘We report a lattice Boltzmann model that can be used to simulate fluid-solid coupling heat transfer in fractal porous media. A numerical simulation is conducted to investigate the temperature evolution under different ratios of thermal conductivity of solid matrix of porous media to that of fluid. The accordance of our simulation results with the solutions from the conventional CFD method indicates the feasibility and the reliability for the developed lattice Boltzmann model to reveal the phenomena and rules of fluid-solid coupling heat transfer in complex porous structures.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10674126 and 10874171, the National Basic Research Program of China under Grant Nos 2006CB921900 and 2009CB921901, the Knowledge Innovation Project of Chinese Academy of Sciences, and the New Century Excellent Talent Project (NCET) of the Ministry of Education of China.
文摘Counter propagated write and read lasers can be used to generate non-classical correlated photon pairs in an atomic ensemble. We experimentally investigate how the detuning of the write laser affects the non-classical correlation function between the Stokes photon and the anti-Stokes photon, which are generated via a spontaneous four-wave mixing process using an off-axis configuration in a cold 85 Rb atomic ensemble. The change of the time-resolved second-order correlated function between the Stokes and anti-Stokes photons is presented. The experimental result suggests that a suitable choice of detuning should be considered in such an experiment.
基金Supported by the National High-Technology Research and Development Program of China under Grant No 2009AA12Z210, and the National Natural Science Foundation of China under Grant Nos 60703107 and 60703108.
文摘A new general network model for two complex networks with time-varying delay coupling is presented. Then we investigate its synchronization phenomena. The two complex networks of the model differ in dynamic nodes, the number of nodes and the coupling connections. By using adaptive controllers, a synchronization criterion is derived. Numerical examples are given to demonstrate the effectiveness of the obtained synchronization criterion. This study may widen the application range of synchronization, such as in chaotic secure communication.
基金Supported by the National Natural Science Foundation of China under Grant No 10575140, the Foundation of China Academy of Engineering Physics under Nos 2008T0401 and 2008T0402, and the Postgraduates Science and Innovation Fund of Chongqing University under Grant No 200811B1A0100299.
文摘The displaying condition of strength, phase and polarization states of high-frequency relic gravitational waves (HFRGWs) in electromagnetic (EM) detecting systems is studied. It is shown that the displaying condition depends not only on the sensitivity of EM detecting systems and the amplitudes of HFRGWs, but also on the phase, the polarization states of HFRGWs and their matching to the EM detecting systems. In order to display simultaneously the strength, phase and polarization states of the resonant "monochromatic component" of HFRGWs, an important necessary condition is the utilization of two or more different EM detectors.
文摘Gamma-ray bursts (GRBs) are extremely powerful explosions that have been traditionally classified into two categories: long bursts (LGRBs) with an observed duration T<sub>90 </sub>> 2 s, and short bursts (SGRBs) with an observed duration T<sub>90</sub> T<sub>90</sub> is the time interval during which 90% of the fluence is detected. LGRBs are believed to emanate from the core-collapse of massive stars, while SGRBs are believed to result from the merging of two compact objects, like two neutron stars. Because LGRBs are produced by the violent death of massive stars, we expect that their redshift distribution should trace the star-formation rate (SFR). The purpose of our study is to investigate the extent to which the redshift distribution of LGRBs follows and reflects the SFR. We use a sample of 370 LGRBs taken from the Swift catalog, and we investigate different models for the LGRB redshift distribution. We also carry out Monte Carlo simulations to check the consistency of our results. Our results indicate that the SFR can describe the LGRB redshift distribution well for high redshift bursts, but it needs an evolution term to fit the distribution well at low redshift.
文摘This article proposes an explanation for High-Energy Atmospheric phenomena through the frames of Hypersphere World-Universe Model (WUM). In WUM, Terrestrial Gamma-Ray Flashes (TGFs) are, in fact, Gamma-Ray Bursts (GRBs). The spectra of TGFs at very high energies are explained by Dark Matter particles annihilation in Geocorona. Lightning initiation problem is solved by GRBs that slam into thunderclouds and carve a conductive path through a thunderstorm. We introduce Multiworld consisting of Macro-World, Large-World, Small-World, and Micro-World, characterized by suggested Gravitational, Extremely-Weak, Super-Weak, and Weak interaction respectively. We propose a new model of Ball Lightning formation based on the Dark Matter Core surrounded by electron-positron plasma in the Small-World.
文摘Hypersphere World-Universe Model (WUM) envisions Matter carried from the Universe into the World from the fourth spatial dimension by Dark Matter Particles (DMPs). Luminous Matter is a byproduct of Dark Matter (DM) self-annihilation. WUM introduces Dark Epoch (spanning from the Beginning of the World for 0.45 billion years) and Luminous Epoch (ever since for 13.77 billion years). Big Bang discussed in Standard Cosmology (SC) is, in our view, transition from Dark Epoch to Luminous Epoch due to Rotational Fission of Overspinning DM Supercluster’s Cores and self-annihilation of DMPs. WUM solves a number of physical problems in SC and Astrophysics through DMPs and their interactions: Angular Momentum problem in birth and subsequent evolution of Galaxies and Extrasolar systems;Fermi Bubbles—two large structures in gamma-rays and X-rays above and below Galactic center;Coronal Heating problem in solar physics—temperature of Sun’s corona exceeding that of photosphere by millions of degrees;Cores of Sun and Earth rotating faster than their surfaces;Diversity of Gravitationally-Rounded objects in Solar system and their Internal Heating. Model makes predictions pertaining to Rest Energies of DMPs, proposes New Type of their Interactions. WUM reveals Inter-Connectivity of Primary Cosmological Parameters and calculates their values, which are in good agreement with the latest results of their measurements.