In this paper,we develop an entropy-conservative discontinuous Galerkin(DG)method for the shallow water(SW)equation with random inputs.One of the most popular methods for uncertainty quantifcation is the generalized P...In this paper,we develop an entropy-conservative discontinuous Galerkin(DG)method for the shallow water(SW)equation with random inputs.One of the most popular methods for uncertainty quantifcation is the generalized Polynomial Chaos(gPC)approach which we consider in the following manuscript.We apply the stochastic Galerkin(SG)method to the stochastic SW equations.Using the SG approach in the stochastic hyperbolic SW system yields a purely deterministic system that is not necessarily hyperbolic anymore.The lack of the hyperbolicity leads to ill-posedness and stability issues in numerical simulations.By transforming the system using Roe variables,the hyperbolicity can be ensured and an entropy-entropy fux pair is known from a recent investigation by Gerster and Herty(Commun.Comput.Phys.27(3):639–671,2020).We use this pair and determine a corresponding entropy fux potential.Then,we construct entropy conservative numerical twopoint fuxes for this augmented system.By applying these new numerical fuxes in a nodal DG spectral element method(DGSEM)with fux diferencing ansatz,we obtain a provable entropy conservative(dissipative)scheme.In numerical experiments,we validate our theoretical fndings.展开更多
In this article, we develop a fully Discrete Galerkin(DG) method for solving ini- tial value fractional integro-differential equations(FIDEs). We consider Generalized Jacobi polynomials(CJPs) with indexes corres...In this article, we develop a fully Discrete Galerkin(DG) method for solving ini- tial value fractional integro-differential equations(FIDEs). We consider Generalized Jacobi polynomials(CJPs) with indexes corresponding to the number of homogeneous initial conditions as natural basis functions for the approximate solution. The fractional derivatives are used in the Caputo sense. The numerical solvability of algebraic system obtained from implementation of proposed method for a special case of FIDEs is investigated. We also provide a suitable convergence analysis to approximate solutions under a more general regularity assumption on the exact solution. Numerical results are presented to demonstrate the effectiveness of the proposed method.展开更多
High quality of geometry representation is regarded essential for high-order methods to maintain their high-order accuracy. An agglomerated high-order mesh generating method is investigated in combination with discont...High quality of geometry representation is regarded essential for high-order methods to maintain their high-order accuracy. An agglomerated high-order mesh generating method is investigated in combination with discontinuous Galerkin(DG) method for solving the 3D compressible Euler and Navier-Stokes equations. In this method, a fine linear mesh is first generated by standard commercial mesh generation tools. By taking advantage of an agglomeration method, a quadratic high-order mesh is quickly obtained, which is coarse but provides a high-quality geometry representation, thus very suitable for high-order computations. High-order discretizations are performed on the obtained grids with DG method and the discretized system is treated fully implicitly to obtain steady state solutions. Numerical experiments on several flow problems indicate that the agglomerated high-order mesh works well with DG method in dealing with flow problems of curved geometries. It is also found that with a fully implicit discretized system and a p-sequencing method, the DG method can achieve convergence state within several time steps which shows significant efficiency improvements compared to its explicit counterparts.展开更多
The discontinuous Galerkin(DG)finite element method has been popular as a numerical technique for solving the conservation laws.In the present study,in order to investigate the shock wave structures in highly thermal ...The discontinuous Galerkin(DG)finite element method has been popular as a numerical technique for solving the conservation laws.In the present study,in order to investigate the shock wave structures in highly thermal nonequilibrium,an explicit modal cell-based DG scheme is developed for solving the conservation laws in conjunction with nonlinear coupled constitutive relations(NCCR).Convergent iterative methods for solving algebraic constitutive relations are also implemented in the DG scheme.It is shown that the new scheme works well for all Mach numbers,for example,Ma=15.展开更多
Transport problems arise across diverse fields of science and engineering.Semi-Lagran-gian(SL)discontinuous Galerkin(DG)methods are a class of high-order deterministic transport solvers that enjoy advantages of both t...Transport problems arise across diverse fields of science and engineering.Semi-Lagran-gian(SL)discontinuous Galerkin(DG)methods are a class of high-order deterministic transport solvers that enjoy advantages of both the SL approach and the DG spatial discre-tization.In this paper,we review existing SLDG methods to date and compare numerically their performance.In particular,we make a comparison between the splitting and non-splitting SLDG methods for multi-dimensional transport simulations.Through extensive numerical results,we offer a practical guide for choosing optimal SLDG solvers for linear and nonlinear transport simulations.展开更多
We present a high-order discontinuous Galerkin(DG)scheme to solve the system of helically symmetric Navier-Stokes equations which are discussed in[28].In particular,we discretize the helically reduced Navier-Stokes eq...We present a high-order discontinuous Galerkin(DG)scheme to solve the system of helically symmetric Navier-Stokes equations which are discussed in[28].In particular,we discretize the helically reduced Navier-Stokes equations emerging from a reduction of the independent variables such that the remaining variables are:t,r,ξwithξ=az+bϕ,where r,ϕ,z are common cylindrical coordinates and t the time.Beside this,all three velocity components are kept non-zero.A new non-singular coordinateηis introduced which ensures that a mapping of helical solutions into the three-dimensional space is well defined.Using that,periodicity conditions for the helical frame aswell as uniqueness conditions at the centerline axis r=0 are derived.In the sector near the axis of the computational domain a change of the polynomial basis is implemented such that all physical quantities are uniquely defined at the centerline.For the temporal integration,we present a semi-explicit scheme of third order where the full spatial operator is splitted into a Stokes operator which is discretized implicitly and an operator for the nonlinear terms which is treated explicitly.Computations are conducted for a cylindrical shell,excluding the centerline axis,and for the full cylindrical domain,where the centerline is included.In all cases we obtain the convergence rates of order O(hk+1)that are expected from DG theory.In addition to the first DG discretization of the system of helically invariant Navier-Stokes equations,the treatment of the central axis,the resulting reduction of the DG space,and the simultaneous use of a semi-explicit time stepper are of particular novelty.展开更多
A well-balanced numerical model is presented for two-dimensional, depth-averaged, shallow water flows based on the Discontinuous Galerkin (DG) method. The model is applied to simulate dam-break flood in natural rive...A well-balanced numerical model is presented for two-dimensional, depth-averaged, shallow water flows based on the Discontinuous Galerkin (DG) method. The model is applied to simulate dam-break flood in natural rivers with wet/dry bed and complex topography. To eliminate numerical imbalance, the pressure force and bed slope terms are combined in the shallow water flow equations. For partially wet/dry elements, a treatment of the source term that preserves the well-balanced property is presented. A treatment for modeling flow over initially dry bed is presented. Numerical results show that the time step used is related to the dry bed criterion. The intercell numerical flux in the DG method is computed by the Harten-Lax-van Contact (HLLC) approximate Riemann solver. A two-dimensional slope limiting procedure is employed to prevent spurious oscillation. The robustness and accuracy of the model are demonstrated through several test cases, including dam-break flow in a channel with three bumps, laboratory dam-break tests over a triangular bump and an L-shape bend, dam-break flood in the Paute River, and the Malpasset dam-break case. Numerical results show that the model is robust and accurate to simulate dam-break flood over natural rivers with complex geometry and wet/dry beds.展开更多
In this paper,we propose a novel Local Macroscopic Conservative(LoMaC)low rank tensor method with discontinuous Galerkin(DG)discretization for the physical and phase spaces for simulating the Vlasov-Poisson(VP)system....In this paper,we propose a novel Local Macroscopic Conservative(LoMaC)low rank tensor method with discontinuous Galerkin(DG)discretization for the physical and phase spaces for simulating the Vlasov-Poisson(VP)system.The LoMaC property refers to the exact local conservation of macroscopic mass,momentum,and energy at the discrete level.The recently developed LoMaC low rank tensor algorithm(arXiv:2207.00518)simultaneously evolves the macroscopic conservation laws of mass,momentum,and energy using the kinetic flux vector splitting;then the LoMaC property is realized by projecting the low rank kinetic solution onto a subspace that shares the same macroscopic observables.This paper is a generalization of our previous work,but with DG discretization to take advantage of its compactness and flexibility in handling boundary conditions and its superior accuracy in the long term.The algorithm is developed in a similar fashion as that for a finite difference scheme,by observing that the DG method can be viewed equivalently in a nodal fashion.With the nodal DG method,assuming a tensorized computational grid,one will be able to(i)derive differentiation matrices for different nodal points based on a DG upwind discretization of transport terms,and(ii)define a weighted inner product space based on the nodal DG grid points.The algorithm can be extended to the high dimensional problems by hierarchical Tucker(HT)decomposition of solution tensors and a corresponding conservative projection algorithm.In a similar spirit,the algorithm can be extended to DG methods on nodal points of an unstructured mesh,or to other types of discretization,e.g.,the spectral method in velocity direction.Extensive numerical results are performed to showcase the efficacy of the method.展开更多
This paper provides a study on the stability and time-step constraints of solving the linearized Korteweg-de Vries(KdV)equation,using implicit-explicit(IMEX)Runge-Kutta(RK)time integration methods combined with either...This paper provides a study on the stability and time-step constraints of solving the linearized Korteweg-de Vries(KdV)equation,using implicit-explicit(IMEX)Runge-Kutta(RK)time integration methods combined with either finite difference(FD)or local discontinuous Galerkin(DG)spatial discretization.We analyze the stability of the fully discrete scheme,on a uniform mesh with periodic boundary conditions,using the Fourier method.For the linearized KdV equation,the IMEX schemes are stable under the standard Courant-Friedrichs-Lewy(CFL)conditionτ≤λh.Here,λis the CFL number,τis the time-step size,and h is the spatial mesh size.We study several IMEX schemes and characterize their CFL number as a function ofθ=d/h^(2)with d being the dispersion coefficient,which leads to several interesting observations.We also investigate the asymptotic behaviors of the CFL number for sufficiently refined meshes and derive the necessary conditions for the asymptotic stability of the IMEX-RK methods.Some numerical experiments are provided in the paper to illustrate the performance of IMEX methods under different time-step constraints.展开更多
In this paper,we develop bound-preserving discontinuous Galerkin(DG)methods for chemical reactive flows.There are several difficulties in constructing suitable numerical schemes.First of all,the density and internal e...In this paper,we develop bound-preserving discontinuous Galerkin(DG)methods for chemical reactive flows.There are several difficulties in constructing suitable numerical schemes.First of all,the density and internal energy are positive,and the mass fraction of each species is between 0 and 1.Second,due to the rapid reaction rate,the system may contain stiff sources,and the strong-stability-preserving explicit Runge-Kutta method may result in limited time-step sizes.To obtain physically relevant numerical approximations,we apply the bound-preserving technique to the DG methods.Though traditional positivity-preserving techniques can successfully yield positive density,internal energy,and mass fractions,they may not enforce the upper bound 1 of the mass fractions.To solve this problem,we need to(i)make sure the numerical fluxes in the equations of the mass fractions are consistent with that in the equation of the density;(ii)choose conservative time integrations,such that the summation of the mass fractions is preserved.With the above two conditions,the positive mass fractions have summation 1,and then,they are all between 0 and 1.For time discretization,we apply the modified Runge-Kutta/multi-step Patankar methods,which are explicit for the flux while implicit for the source.Such methods can handle stiff sources with relatively large time steps,preserve the positivity of the target variables,and keep the summation of the mass fractions to be 1.Finally,it is not straightforward to combine the bound-preserving DG methods and the Patankar time integrations.The positivity-preserving technique for DG methods requires positive numerical approximations at the cell interfaces,while Patankar methods can keep the positivity of the pre-selected point values of the target variables.To match the degree of freedom,we use polynomials on rectangular meshes for problems in two space dimensions.To evolve in time,we first read the polynomials at the Gaussian points.Then,suitable slope limiters can be applied to enforce the positivity展开更多
In this paper,we construct a high-order discontinuous Galerkin(DG)method which can preserve the positivity of the density and the pressure for the viscous and resistive magnetohydrodynamics(VRMHD).To control the diver...In this paper,we construct a high-order discontinuous Galerkin(DG)method which can preserve the positivity of the density and the pressure for the viscous and resistive magnetohydrodynamics(VRMHD).To control the divergence error in the magnetic field,both the local divergence-free basis and the Godunov source term would be employed for the multi-dimensional VRMHD.Rigorous theoretical analyses are presented for one-dimensional and multi-dimensional DG schemes,respectively,showing that the scheme can maintain the positivity-preserving(PP)property under some CFL conditions when combined with the strong-stability-preserving time discretization.Then,general frameworks are established to construct the PP limiter for arbitrary order of accuracy DG schemes.Numerical tests demonstrate the effectiveness of the proposed schemes.展开更多
In this paper,numerical experiments are carried out to investigate the impact of penalty parameters in the numerical traces on the resonance errors of high-order multiscale discontinuous Galerkin(DG)methods(Dong et al...In this paper,numerical experiments are carried out to investigate the impact of penalty parameters in the numerical traces on the resonance errors of high-order multiscale discontinuous Galerkin(DG)methods(Dong et al.in J Sci Comput 66:321–345,2016;Dong and Wang in J Comput Appl Math 380:1–11,2020)for a one-dimensional stationary Schrödinger equation.Previous work showed that penalty parameters were required to be positive in error analysis,but the methods with zero penalty parameters worked fine in numerical simulations on coarse meshes.In this work,by performing extensive numerical experiments,we discover that zero penalty parameters lead to resonance errors in the multiscale DG methods,and taking positive penalty parameters can effectively reduce resonance errors and make the matrix in the global linear system have better condition numbers.展开更多
The time discretization in the Discontinuous Galerkin (DG) scheme has been traditionally based on the Total Variation Diminishing (TVD) second-order Runge-Kutta (RK2) scheme. Computational efficiency and accurac...The time discretization in the Discontinuous Galerkin (DG) scheme has been traditionally based on the Total Variation Diminishing (TVD) second-order Runge-Kutta (RK2) scheme. Computational efficiency and accuracy with the Euler Forward (EF) and the TVD second-order RK2 time stepping schemes in the DG method are investigated in this work. Numerical tests are condu- cted with the scalar Burgers equation, 1-D and 2-D shallow water flow equations. The maximum Courant number or time step size required for stability for the EF scheme and RK2 scheme with different slope limiters are compared. Numerical results show that the slope limiters affect the stability requirement in the DG method. The RK2 scheme is generally more diffusive than the EF scheme, and the RK2 scheme allows larger time step sizes. The EF scheme is found to be more efficient and accurate than the RK2 scheme in the DG method in computation.展开更多
Efficient and robust solution strategies are developed for discontinuous Galerkin (DG) discretization of the Navier-Stokes (NS) and Reynolds-averaged NS (RANS) equations on structured/unstructured hybrid meshes....Efficient and robust solution strategies are developed for discontinuous Galerkin (DG) discretization of the Navier-Stokes (NS) and Reynolds-averaged NS (RANS) equations on structured/unstructured hybrid meshes. A novel line-implicit scheme is devised and implemented to reduce the memory gain and improve the computational eificiency for highly anisotropic meshes. A simple and effective technique to use the mod- ified Baldwin-Lomax (BL) model on the unstructured meshes for the DC methods is proposed. The compact Hermite weighted essentially non-oscillatory (HWENO) limiters are also investigated for the hybrid meshes to treat solution discontinuities. A variety of compressible viscous flows are performed to examine the capability of the present high- order DG solver. Numerical results indicate that the designed line-implicit algorithms exhibit weak dependence on the cell aspect-ratio as well as the discretization order. The accuracy and robustness of the proposed approaches are demonstrated by capturing com- plex flow structures and giving reliable predictions of benchmark turbulent problems.展开更多
Two types of implicit algorithms have been im- proved for high order discontinuous Galerkin (DG) method to solve compressible Navier-Stokes (NS) equations on tri- angular grids. A block lower-upper symmetric Gauss...Two types of implicit algorithms have been im- proved for high order discontinuous Galerkin (DG) method to solve compressible Navier-Stokes (NS) equations on tri- angular grids. A block lower-upper symmetric Gauss- Seidel (BLU-SGS) approach is implemented as a nonlin- ear iterative scheme. And a modified LU-SGS (LLU-SGS) approach is suggested to reduce the memory requirements while retain the good convergence performance of the origi- nal LU-SGS approach. Both implicit schemes have the sig- nificant advantage that only the diagonal block matrix is stored. The resulting implicit high-order DG methods are applied, in combination with Hermite weighted essentially non-oscillatory (HWENO) limiters, to solve viscous flow problems. Numerical results demonstrate that the present implicit methods are able to achieve significant efficiency improvements over explicit counterparts and for viscous flows with shocks, and the HWENO limiters can be used to achieve the desired essentially non-oscillatory shock tran- sition and the designed high-order accuracy simultaneously.展开更多
文摘In this paper,we develop an entropy-conservative discontinuous Galerkin(DG)method for the shallow water(SW)equation with random inputs.One of the most popular methods for uncertainty quantifcation is the generalized Polynomial Chaos(gPC)approach which we consider in the following manuscript.We apply the stochastic Galerkin(SG)method to the stochastic SW equations.Using the SG approach in the stochastic hyperbolic SW system yields a purely deterministic system that is not necessarily hyperbolic anymore.The lack of the hyperbolicity leads to ill-posedness and stability issues in numerical simulations.By transforming the system using Roe variables,the hyperbolicity can be ensured and an entropy-entropy fux pair is known from a recent investigation by Gerster and Herty(Commun.Comput.Phys.27(3):639–671,2020).We use this pair and determine a corresponding entropy fux potential.Then,we construct entropy conservative numerical twopoint fuxes for this augmented system.By applying these new numerical fuxes in a nodal DG spectral element method(DGSEM)with fux diferencing ansatz,we obtain a provable entropy conservative(dissipative)scheme.In numerical experiments,we validate our theoretical fndings.
文摘In this article, we develop a fully Discrete Galerkin(DG) method for solving ini- tial value fractional integro-differential equations(FIDEs). We consider Generalized Jacobi polynomials(CJPs) with indexes corresponding to the number of homogeneous initial conditions as natural basis functions for the approximate solution. The fractional derivatives are used in the Caputo sense. The numerical solvability of algebraic system obtained from implementation of proposed method for a special case of FIDEs is investigated. We also provide a suitable convergence analysis to approximate solutions under a more general regularity assumption on the exact solution. Numerical results are presented to demonstrate the effectiveness of the proposed method.
基金co-supported by the Aeronautical Science Foundation of China (No. 20152752033)the National Natural Science Foundation of China (No. 11272152)the Open Project of Key Laboratory of Aerodynamic Noise Control
文摘High quality of geometry representation is regarded essential for high-order methods to maintain their high-order accuracy. An agglomerated high-order mesh generating method is investigated in combination with discontinuous Galerkin(DG) method for solving the 3D compressible Euler and Navier-Stokes equations. In this method, a fine linear mesh is first generated by standard commercial mesh generation tools. By taking advantage of an agglomeration method, a quadratic high-order mesh is quickly obtained, which is coarse but provides a high-quality geometry representation, thus very suitable for high-order computations. High-order discretizations are performed on the obtained grids with DG method and the discretized system is treated fully implicitly to obtain steady state solutions. Numerical experiments on several flow problems indicate that the agglomerated high-order mesh works well with DG method in dealing with flow problems of curved geometries. It is also found that with a fully implicit discretized system and a p-sequencing method, the DG method can achieve convergence state within several time steps which shows significant efficiency improvements compared to its explicit counterparts.
基金Supported by the National Research Foundation of the Ministry of Education,Science and Technology of Korea(Priority Research Centers Program NRF 2012-048078Basic Science Research Program NRF 2012 R1A2A2A02-046270)
文摘The discontinuous Galerkin(DG)finite element method has been popular as a numerical technique for solving the conservation laws.In the present study,in order to investigate the shock wave structures in highly thermal nonequilibrium,an explicit modal cell-based DG scheme is developed for solving the conservation laws in conjunction with nonlinear coupled constitutive relations(NCCR).Convergent iterative methods for solving algebraic constitutive relations are also implemented in the DG scheme.It is shown that the new scheme works well for all Mach numbers,for example,Ma=15.
基金W.Guo:Research is supported by NSF grant NSF-DMS-1830838J.-M.Qiu:Research is supported by NSF grant NSF-DMS-1522777 and NSF-DMS-1818924Air Force Office of Scientific Computing FA9550-18-1-0257.
文摘Transport problems arise across diverse fields of science and engineering.Semi-Lagran-gian(SL)discontinuous Galerkin(DG)methods are a class of high-order deterministic transport solvers that enjoy advantages of both the SL approach and the DG spatial discre-tization.In this paper,we review existing SLDG methods to date and compare numerically their performance.In particular,we make a comparison between the splitting and non-splitting SLDG methods for multi-dimensional transport simulations.Through extensive numerical results,we offer a practical guide for choosing optimal SLDG solvers for linear and nonlinear transport simulations.
文摘We present a high-order discontinuous Galerkin(DG)scheme to solve the system of helically symmetric Navier-Stokes equations which are discussed in[28].In particular,we discretize the helically reduced Navier-Stokes equations emerging from a reduction of the independent variables such that the remaining variables are:t,r,ξwithξ=az+bϕ,where r,ϕ,z are common cylindrical coordinates and t the time.Beside this,all three velocity components are kept non-zero.A new non-singular coordinateηis introduced which ensures that a mapping of helical solutions into the three-dimensional space is well defined.Using that,periodicity conditions for the helical frame aswell as uniqueness conditions at the centerline axis r=0 are derived.In the sector near the axis of the computational domain a change of the polynomial basis is implemented such that all physical quantities are uniquely defined at the centerline.For the temporal integration,we present a semi-explicit scheme of third order where the full spatial operator is splitted into a Stokes operator which is discretized implicitly and an operator for the nonlinear terms which is treated explicitly.Computations are conducted for a cylindrical shell,excluding the centerline axis,and for the full cylindrical domain,where the centerline is included.In all cases we obtain the convergence rates of order O(hk+1)that are expected from DG theory.In addition to the first DG discretization of the system of helically invariant Navier-Stokes equations,the treatment of the central axis,the resulting reduction of the DG space,and the simultaneous use of a semi-explicit time stepper are of particular novelty.
基金Supported by NSFC(10572028)National Basic Research Program of China(2005CB321702)+4 种基金CAEP(2007B09009)National Hi-Tech Inertial Confinement Fusion Committee of ChinaNSF(DMS-0809086)ARO(W911NF-08-1-0520)DOE(DE-FG02-08ER25863)
文摘A well-balanced numerical model is presented for two-dimensional, depth-averaged, shallow water flows based on the Discontinuous Galerkin (DG) method. The model is applied to simulate dam-break flood in natural rivers with wet/dry bed and complex topography. To eliminate numerical imbalance, the pressure force and bed slope terms are combined in the shallow water flow equations. For partially wet/dry elements, a treatment of the source term that preserves the well-balanced property is presented. A treatment for modeling flow over initially dry bed is presented. Numerical results show that the time step used is related to the dry bed criterion. The intercell numerical flux in the DG method is computed by the Harten-Lax-van Contact (HLLC) approximate Riemann solver. A two-dimensional slope limiting procedure is employed to prevent spurious oscillation. The robustness and accuracy of the model are demonstrated through several test cases, including dam-break flow in a channel with three bumps, laboratory dam-break tests over a triangular bump and an L-shape bend, dam-break flood in the Paute River, and the Malpasset dam-break case. Numerical results show that the model is robust and accurate to simulate dam-break flood over natural rivers with complex geometry and wet/dry beds.
基金supported by the NSF(Grant Nos.the NSF-DMS-1818924 and 2111253)the Air Force Office of Scientific Research FA9550-22-1-0390 and Department of Energy DE-SC0023164+1 种基金supported by the NSF(Grant Nos.NSF-DMS-1830838 and NSF-DMS-2111383)the Air Force Office of Scientific Research FA9550-22-1-0390.
文摘In this paper,we propose a novel Local Macroscopic Conservative(LoMaC)low rank tensor method with discontinuous Galerkin(DG)discretization for the physical and phase spaces for simulating the Vlasov-Poisson(VP)system.The LoMaC property refers to the exact local conservation of macroscopic mass,momentum,and energy at the discrete level.The recently developed LoMaC low rank tensor algorithm(arXiv:2207.00518)simultaneously evolves the macroscopic conservation laws of mass,momentum,and energy using the kinetic flux vector splitting;then the LoMaC property is realized by projecting the low rank kinetic solution onto a subspace that shares the same macroscopic observables.This paper is a generalization of our previous work,but with DG discretization to take advantage of its compactness and flexibility in handling boundary conditions and its superior accuracy in the long term.The algorithm is developed in a similar fashion as that for a finite difference scheme,by observing that the DG method can be viewed equivalently in a nodal fashion.With the nodal DG method,assuming a tensorized computational grid,one will be able to(i)derive differentiation matrices for different nodal points based on a DG upwind discretization of transport terms,and(ii)define a weighted inner product space based on the nodal DG grid points.The algorithm can be extended to the high dimensional problems by hierarchical Tucker(HT)decomposition of solution tensors and a corresponding conservative projection algorithm.In a similar spirit,the algorithm can be extended to DG methods on nodal points of an unstructured mesh,or to other types of discretization,e.g.,the spectral method in velocity direction.Extensive numerical results are performed to showcase the efficacy of the method.
基金supported by the NSF under Grant DMS-2208391sponsored by the NSF under Grant DMS-1753581.
文摘This paper provides a study on the stability and time-step constraints of solving the linearized Korteweg-de Vries(KdV)equation,using implicit-explicit(IMEX)Runge-Kutta(RK)time integration methods combined with either finite difference(FD)or local discontinuous Galerkin(DG)spatial discretization.We analyze the stability of the fully discrete scheme,on a uniform mesh with periodic boundary conditions,using the Fourier method.For the linearized KdV equation,the IMEX schemes are stable under the standard Courant-Friedrichs-Lewy(CFL)conditionτ≤λh.Here,λis the CFL number,τis the time-step size,and h is the spatial mesh size.We study several IMEX schemes and characterize their CFL number as a function ofθ=d/h^(2)with d being the dispersion coefficient,which leads to several interesting observations.We also investigate the asymptotic behaviors of the CFL number for sufficiently refined meshes and derive the necessary conditions for the asymptotic stability of the IMEX-RK methods.Some numerical experiments are provided in the paper to illustrate the performance of IMEX methods under different time-step constraints.
基金supported by the NSF under Grant DMS-1818467Simons Foundation under Grant 961585.
文摘In this paper,we develop bound-preserving discontinuous Galerkin(DG)methods for chemical reactive flows.There are several difficulties in constructing suitable numerical schemes.First of all,the density and internal energy are positive,and the mass fraction of each species is between 0 and 1.Second,due to the rapid reaction rate,the system may contain stiff sources,and the strong-stability-preserving explicit Runge-Kutta method may result in limited time-step sizes.To obtain physically relevant numerical approximations,we apply the bound-preserving technique to the DG methods.Though traditional positivity-preserving techniques can successfully yield positive density,internal energy,and mass fractions,they may not enforce the upper bound 1 of the mass fractions.To solve this problem,we need to(i)make sure the numerical fluxes in the equations of the mass fractions are consistent with that in the equation of the density;(ii)choose conservative time integrations,such that the summation of the mass fractions is preserved.With the above two conditions,the positive mass fractions have summation 1,and then,they are all between 0 and 1.For time discretization,we apply the modified Runge-Kutta/multi-step Patankar methods,which are explicit for the flux while implicit for the source.Such methods can handle stiff sources with relatively large time steps,preserve the positivity of the target variables,and keep the summation of the mass fractions to be 1.Finally,it is not straightforward to combine the bound-preserving DG methods and the Patankar time integrations.The positivity-preserving technique for DG methods requires positive numerical approximations at the cell interfaces,while Patankar methods can keep the positivity of the pre-selected point values of the target variables.To match the degree of freedom,we use polynomials on rectangular meshes for problems in two space dimensions.To evolve in time,we first read the polynomials at the Gaussian points.Then,suitable slope limiters can be applied to enforce the positivity
基金supported by the NSFC Grant 11901555,12271499the Cyrus Tang Foundationsupported by the NSFC Grant 11871448 and 12126604.
文摘In this paper,we construct a high-order discontinuous Galerkin(DG)method which can preserve the positivity of the density and the pressure for the viscous and resistive magnetohydrodynamics(VRMHD).To control the divergence error in the magnetic field,both the local divergence-free basis and the Godunov source term would be employed for the multi-dimensional VRMHD.Rigorous theoretical analyses are presented for one-dimensional and multi-dimensional DG schemes,respectively,showing that the scheme can maintain the positivity-preserving(PP)property under some CFL conditions when combined with the strong-stability-preserving time discretization.Then,general frameworks are established to construct the PP limiter for arbitrary order of accuracy DG schemes.Numerical tests demonstrate the effectiveness of the proposed schemes.
基金supported by the National Science Foundation grant DMS-1818998.
文摘In this paper,numerical experiments are carried out to investigate the impact of penalty parameters in the numerical traces on the resonance errors of high-order multiscale discontinuous Galerkin(DG)methods(Dong et al.in J Sci Comput 66:321–345,2016;Dong and Wang in J Comput Appl Math 380:1–11,2020)for a one-dimensional stationary Schrödinger equation.Previous work showed that penalty parameters were required to be positive in error analysis,but the methods with zero penalty parameters worked fine in numerical simulations on coarse meshes.In this work,by performing extensive numerical experiments,we discover that zero penalty parameters lead to resonance errors in the multiscale DG methods,and taking positive penalty parameters can effectively reduce resonance errors and make the matrix in the global linear system have better condition numbers.
文摘The time discretization in the Discontinuous Galerkin (DG) scheme has been traditionally based on the Total Variation Diminishing (TVD) second-order Runge-Kutta (RK2) scheme. Computational efficiency and accuracy with the Euler Forward (EF) and the TVD second-order RK2 time stepping schemes in the DG method are investigated in this work. Numerical tests are condu- cted with the scalar Burgers equation, 1-D and 2-D shallow water flow equations. The maximum Courant number or time step size required for stability for the EF scheme and RK2 scheme with different slope limiters are compared. Numerical results show that the slope limiters affect the stability requirement in the DG method. The RK2 scheme is generally more diffusive than the EF scheme, and the RK2 scheme allows larger time step sizes. The EF scheme is found to be more efficient and accurate than the RK2 scheme in the DG method in computation.
基金Project supported by the National Basic Research Program of China(No.2009CB724104)
文摘Efficient and robust solution strategies are developed for discontinuous Galerkin (DG) discretization of the Navier-Stokes (NS) and Reynolds-averaged NS (RANS) equations on structured/unstructured hybrid meshes. A novel line-implicit scheme is devised and implemented to reduce the memory gain and improve the computational eificiency for highly anisotropic meshes. A simple and effective technique to use the mod- ified Baldwin-Lomax (BL) model on the unstructured meshes for the DC methods is proposed. The compact Hermite weighted essentially non-oscillatory (HWENO) limiters are also investigated for the hybrid meshes to treat solution discontinuities. A variety of compressible viscous flows are performed to examine the capability of the present high- order DG solver. Numerical results indicate that the designed line-implicit algorithms exhibit weak dependence on the cell aspect-ratio as well as the discretization order. The accuracy and robustness of the proposed approaches are demonstrated by capturing com- plex flow structures and giving reliable predictions of benchmark turbulent problems.
基金supported by the National Basic Research Program of China(2009CB724104)
文摘Two types of implicit algorithms have been im- proved for high order discontinuous Galerkin (DG) method to solve compressible Navier-Stokes (NS) equations on tri- angular grids. A block lower-upper symmetric Gauss- Seidel (BLU-SGS) approach is implemented as a nonlin- ear iterative scheme. And a modified LU-SGS (LLU-SGS) approach is suggested to reduce the memory requirements while retain the good convergence performance of the origi- nal LU-SGS approach. Both implicit schemes have the sig- nificant advantage that only the diagonal block matrix is stored. The resulting implicit high-order DG methods are applied, in combination with Hermite weighted essentially non-oscillatory (HWENO) limiters, to solve viscous flow problems. Numerical results demonstrate that the present implicit methods are able to achieve significant efficiency improvements over explicit counterparts and for viscous flows with shocks, and the HWENO limiters can be used to achieve the desired essentially non-oscillatory shock tran- sition and the designed high-order accuracy simultaneously.