New solutions, for the stationary and temporary states, are derived for the 1D diffusion of cosmic rays in the presence of losses. The new results are applied to the latitude profile of radiation emitted above the gal...New solutions, for the stationary and temporary states, are derived for the 1D diffusion of cosmic rays in the presence of losses. The new results are applied to the latitude profile of radiation emitted above the galactic plane. Percolation theory for a spiral galaxy coupled with the evolution of the super-bubbles allows building a model for the radiation of a spiral galaxy as seen face on. The annulus of radiation of our galaxy is also simulated and the excess of radiation observed at the centre of our galaxy is explained by the sine law which arises in the theory of the image.展开更多
Using 9943 OB-type stars from LAMOST DR7 in the solar neighborhood,we fit the vertical stellar density profile with the model including a single exponential distribution at different positions(R,Φ).The distributions ...Using 9943 OB-type stars from LAMOST DR7 in the solar neighborhood,we fit the vertical stellar density profile with the model including a single exponential distribution at different positions(R,Φ).The distributions of the scale heights and scale length show that the young disk traced by the OB-type stars is not axisymmetric.The scale length decreases versus the azimuthal angleΦ,i.e.,from.■kpc withΦ=-3°to■kpc withΦ=9°.Meanwhile we find signal of non-symmetry in the distribution of the scale height of the north and south of the disk plane.The scale height in the north side shows signal of flaring of the disk,while that of the south disk stays almost constant around h_(s)=130 pc.The distribution of the displaceeent of the disk plane Z_(0)also shows variance versus the azimuthal angleΦ,which displays significant differences with the warp model constrained by the Cepheid stars.We also test different values for the position of the Sun,and the distance between the Sun and the Galactic center affects the scale heights and the displacement of the disk significantly,but that does not change our conclusion that the disk is not axisymmetric.展开更多
With the new Hipparcos data recently released, we reexamine the kinematics in the solar neighborhood. Two different populations of objects, namely the thin-disk O-B5 stars and the thick-disk K-M giants, are selected f...With the new Hipparcos data recently released, we reexamine the kinematics in the solar neighborhood. Two different populations of objects, namely the thin-disk O-B5 stars and the thick-disk K-M giants, are selected for tracing the kinematical parameters of the Galaxy. Using a 3-D kinematical model, the components of the solar motion and the Oort constants are derived. The solutions and the kinematics inferred from both types of stars are analyzed. The results obtained with the new data are compared with those from the old Hipparcos data. We conclude that the present solution provides a more reliable estimation of the Oort constants, thanks to the new reduction of the Hipparcos data that provides even more accurate astrometric measurements of stars.展开更多
We model the conservation of energy in the framework of the thin layer approximation for two types of interstellar medium (ISM). In particular, we analyse an ISM in the presence of self-gravity and a Gaussian ISM whic...We model the conservation of energy in the framework of the thin layer approximation for two types of interstellar medium (ISM). In particular, we analyse an ISM in the presence of self-gravity and a Gaussian ISM which produces an asymmetry in the advancing shell. The astrophysical targets to be simulated are the Fermi bubbles, the local bubble, and the W4 super-bubble. The theory of images is applied to a piriform curve, which allows deriving some analytical formulae for the observed intensity in the case of an optically thin medium.展开更多
The shape of the local bubble is modeled in the framework of the thin layer approximation. The asymmetric shape of the local bubble is simulated by introducing axial profiles for the density of the interstellar medium...The shape of the local bubble is modeled in the framework of the thin layer approximation. The asymmetric shape of the local bubble is simulated by introducing axial profiles for the density of the interstellar medium, such as exponential, Gaussian, inverse square dependence and Navarro-Frenk-White. The availability of some observed asymmetric profiles for the local bubble allows us to match theory and observations via the observational percentage of reliability. The model is compatible with the presence of radioisotopes on Earth.展开更多
The age pattern across spiral arms is one of the key observational features utilised to study the dynamic nature of the Galaxy’s spiral structure.With the most updated samples of high-mass star formation region(HMSFR...The age pattern across spiral arms is one of the key observational features utilised to study the dynamic nature of the Galaxy’s spiral structure.With the most updated samples of high-mass star formation region(HMSFR)masers,O stars and open clusters,we investigated their distributions and kinematic properties in the vicinity of the Sun.We found that the Sagittarius-Carina Arm traced by HMSFRs,O stars((?)10 Myr)and young open clusters(<30 Myr)seem to deviate gradually towards the Galactic Anticenter(GAC)direction.The Local Arm traced by HMSFRs,O stars,young clusters and also mediumyoung clusters(30-100 Myr)are inclined to gradually deviate toward the Galactic Center(GC)direction.The properties for the Local Arm are supported by a simplified simulation of cluster motions in the Galaxy.Indications of systematic motions in the circular and radial velocities are noticed for the old open clusters(>200 Myr).These results are consistent with the idea that star formation can be triggered by spiral shocks of density waves,and indicate that the corotation radius of the Galaxy is located between the SagittariusCarina Arm and the Local Arm,close to the Solar circle.展开更多
We report the detection of a large sample of high-α-metal-rich stars on the low giant branch with 2.6<log g<3.3 dex in the LAMOST-MRS survey.This special group corresponds to an intermediate-age population of 5...We report the detection of a large sample of high-α-metal-rich stars on the low giant branch with 2.6<log g<3.3 dex in the LAMOST-MRS survey.This special group corresponds to an intermediate-age population of 5-9 Gyr based on the[Fe/H]-[C/N]diagram and age-[C/N]calibration.A comparison group is selected to have a solarαratio at super metallicity,which is young and has a narrow age range around 3 Gyr.Both groups have thin-disk like kinematics but the former shows slightly large velocity dispersions.The special group shows a larger extension in a vertical distance toward 1.2 kpc,a second peak at smaller Galactic radius and a larger fraction of super metal rich stars with[Fe/H]>0.2 than the comparison group.These properties strongly indicate its connection with the outer bar/bulge region at R=3-5 kpc.A tentative interpretation of this special group is that its stars were formed in the X-shaped bar/bulge region,close to its corotation radius,where radial migration is the most intense,and brings them to present locations at 9 kpc and beyond.Low eccentricities and slightly outward radial excursions of its stars are consistent with this scenario.Its kinematics(cold)and chemistry([α/Fe]~0.1)further support the formation of the instability-driven X-shaped bar/bulge from the thin disk.展开更多
The problem of the chemical composition gradient in the Galactic disk is studied based on a sample of metallicity estimates of open star clusters,using Gaia DR2-improved distance estimates.A clearly non-monotonic vari...The problem of the chemical composition gradient in the Galactic disk is studied based on a sample of metallicity estimates of open star clusters,using Gaia DR2-improved distance estimates.A clearly non-monotonic variation was observed in the average metallicity of clusters with increasing Galactocentric distance.One can clearly see the metallicity jump of 0.22 in[Fe/H]at a Galactocentric distance of about9.5 kpc,which appears to be linked to the outer boundary of the thinnest and youngest component of the Galactic disk.The absence of a significant metallicity gradient in the internal(R<9 kpc)and external(R>10 kpc)regions of the disk demonstrates the absence of noticeable metal enrichment at times of the order of the ages corresponding to those of the disk regions under consideration.Observational data show that the disk experiences noticeable metal enrichment only during the starburst epochs.No significant dependence was identified between the average metallicity and the age of the clusters.展开更多
Since Sep.2018,LAMOST has started the medium-resolution(R~7500)spectral survey(MRS).We proposed the spectral survey of Galactic nebulae,including HⅡregions,HH objects,supernova remnants,planetary nebulae and the spec...Since Sep.2018,LAMOST has started the medium-resolution(R~7500)spectral survey(MRS).We proposed the spectral survey of Galactic nebulae,including HⅡregions,HH objects,supernova remnants,planetary nebulae and the special stars with MRS(LAMOST MRS-N).LAMOST MRS-N covers about 1700 square degrees of the northern Galactic plane within 40°<l<215°and-5°<b<5°.In this 5-year survey,we plan to observe about 500 thousand nebulae spectra.According to the commissioning observations,the nebulae spectra can provide precise radial velocity with uncertainty less than 1 km s^(-1).These high-precision spectral data are of great significance to our understanding of star formation and evolution.展开更多
LAMOST (Large sky Area Multi-Object fiber Spectroscopic Telescope) is a Chinese national scientific research facility operated by National Astronomical Observatories, Chinese Academy of Sciences (NAOC). After two ...LAMOST (Large sky Area Multi-Object fiber Spectroscopic Telescope) is a Chinese national scientific research facility operated by National Astronomical Observatories, Chinese Academy of Sciences (NAOC). After two years of commis- sioning beginning in 2009, the telescope, instruments, software systems and opera- tions are nearly ready to begin the main science survey. Through a spectral survey of millions of objects in much of the northern sky, LAMOST will enable research in a number of contemporary cutting edge topics in astrophysics, such as discovery of the first generation stars in the Galaxy, pinning down the formation and evolution history of galaxies - especially the Milky Way and its central massive black hole, and look- ing for signatures of the distribution of dark matter and possible sub-structures in the Milky Way halo. To maximize the scientific potential of the facility, wide national par- ticipation and international collaboration have been emphasized. The survey has two major components: the LAMOST ExtraGAlactic Survey (LEGAS) and the LAMOST Experiment for Galactic Understanding and Exploration (LEGUE). Until LAMOST reaches its full capability, the LEGUE portion of the survey will use the available ob- serving time, starting in 2012. An overview of the LAMOST project and the survey that will be carried out in the next five to six years is presented in this paper. The sci- ence plan for the whole LEGUE survey, instrumental specifications, site conditions, and the descriptions of the current on-going pilot survey, including its footprints and target selection algorithm, will be presented as separate papers in this volume.展开更多
We describe the current plans for a spectroscopic survey of millions of stars in the Milky Way galaxy using the Guo Shou Jing Telescope (GSJT, formerly calledthe Large sky Area Multi-Object fiber Spectroscopic Telesc...We describe the current plans for a spectroscopic survey of millions of stars in the Milky Way galaxy using the Guo Shou Jing Telescope (GSJT, formerly calledthe Large sky Area Multi-Object fiber Spectroscopic Telescope -- LAMOST). The survey will obtain spectra for 2.5 million stars brighter than r 〈 19 during dark/grey time, and 5 million stars brighter than r 〈 17 or J 〈 16 on nights that are moonlit or have low transparency. The survey will begin in the fall of 2012, and will run for at least four years. The telescope's design constrains the optimal declination range for observations to 10~ 〈 di 〈 50~, and site conditions lead to an emphasis on stars in the direction of the Galactic anticenter. The survey is divided into three parts with different target selection strategies: disk, anticenter, and spheroid. The resulting dataset will be used to study the merger history of the Milky Way, the substructure and evolution of the disks, the nature of the first generation of stars through identification of the lowest metallicity stars, and star formation through study of open clusters and OB associations. Detailed design of the LAMOST Experiment for Galactic Understanding and Exploration (LEGUE) survey will be completed in summer 2012, after a review of the results of the pilot survey.展开更多
We report a detailed investigation of the bulk motions of the nearby Galactic stellar disk, based on three samples selected from the LSS-GAC DR2: a global sample containing 0.57 million FGK dwarfs out to ~2 kpc, a l...We report a detailed investigation of the bulk motions of the nearby Galactic stellar disk, based on three samples selected from the LSS-GAC DR2: a global sample containing 0.57 million FGK dwarfs out to ~2 kpc, a local subset of the global sample consisting of ~5400 stars within 150 pc, and an anti-center sample containing ~4400AFGK dwarfs and red clump stars within windows a few degrees wide centered on the Galactic Anti-center. The global sample is used to construct a three-dimensional map of bulk motions of the Galactic disk from the solar vicinity out to ~2 kpc with a spatial resolution of ~250 pc. Typical values of the radial and vertical components of bulk motion range from-15 km s-1to 15 km s-1; in contrast, the lag behind the circular motion dominates the azimuthal component by up to ~15 km s-1. The map reveals spatially coherent, kpc-scale stellar flows in the disk, with typical velocities of a few tens of km s-1. Bending- and breathing-mode perturbations are clearly visible,and vary smoothly across the disk plane. Our data also reveal higher-order perturbations, such as breaks and ripples, in the profiles of vertical motion versus height. From the local sample, we find that stars from different populations exhibit very different patterns of bulk motion. Finally, the anti-center sample reveals a number of peaks in stellar number density in the line-of-sight velocity versus distance distribution, with the nearer ones apparently related to the known moving groups. The "velocity bifurcation" reported by Liu et al. at Galactocentric radii 10–11 kpc is confirmed. However,just beyond this distance, our data also reveal a new triple-peaked structure.展开更多
Using a sample of over 70 000 red clump(RC) stars with 5%–10% distance accuracy selected from the LAMOST Spectroscopic Survey of the Galactic Anti-center(LSS-GAC), we study the radial and vertical gradients of th...Using a sample of over 70 000 red clump(RC) stars with 5%–10% distance accuracy selected from the LAMOST Spectroscopic Survey of the Galactic Anti-center(LSS-GAC), we study the radial and vertical gradients of the Galactic disk(s) mainly in the anti-center direction, covering a significant volume of the disk in the range of projected Galactocentric radius 7 ≤ RGC ≤ 14 kpc and height from the Galactic midplane 0 ≤ |Z | ≤ 3 kpc. Our analysis shows that both the radial and vertical metallicity gradients are negative across much of the volume of the disk that is probed, and they exhibit significant spatial variations. Near the solar circle(7 ≤ RGC ≤ 11.5 kpc), the radial gradient has a moderately steep, negative slope of-0.08 dex kpc-1near the midplane(|Z | 〈 0.1 kpc), and the slope flattens with increasing |Z |. In the outer disk(11.5 〈 RGC ≤ 14 kpc), the radial gradients have an essentially constant, much less steep slope of-0.01 dex kpc-1at all heights above the plane, suggesting that the outer disk may have experienced an evolutionary path different from that of the inner disk. The vertical gradients are found to flatten largely with increasing RGC. However, the vertical gradient of the lower disk(0 ≤ |Z | ≤ 1 kpc)is found to flatten with RGC quicker than that of the upper disk(1 〈 |Z | ≤ 3 kpc).Our results should provide strong constraints on the theory of disk formation and evolution, as well as the underlying physical processes that shape the disk(e.g. gas flows,radial migration, and internal and external perturbations).展开更多
Accurate measurements of stellar metallicity gradients in the radial and vertical directions of the disk and their temporal variations provide important constraints on the formation and evolution of the Milky Way disk...Accurate measurements of stellar metallicity gradients in the radial and vertical directions of the disk and their temporal variations provide important constraints on the formation and evolution of the Milky Way disk. We use 297 042 main sequence turn-off stars selected from the LAMOST Spectroscopic Survey of the Galactic Anticenter(LSS-GAC) to determine the radial and vertical gradients of stellar metallicity,△[Fe/H]/△R and △[Fe/H]/△|Z | of the Milky Way disk in the direction of the anticenter. We determine ages of those turn-off stars by isochrone fitting and measure the temporal variations of metallicity gradients. We have carried out a detailed analysis of the selection effects resulting from the selection, observation and data reduction of LSS-GAC targets and the potential biases of a magnitude limited sample on the determinations of metallicity gradients. Our results show that the gradients, both in the radial and vertical directions, exhibit significant spatial and temporal variations. The radial gradients yielded by stars with the oldest ages( 11 Gyr) are essentially zero at all heights from the disk midplane, while those given by younger stars are always negative. The vertical gradients deduced from stars with the oldest ages( 11 Gyr)are negative and only show very weak variations with Galactocentric distance in the disk plane, R, while those yielded by younger stars show strong variations with R.After being essentially flat at the earliest epochs of disk formation, the radial gradients steepen as age decreases, reaching a maximum(steepest) at age 7–8 Gyr, and then they flatten again. Similar temporal trends are also found for the vertical gradients. We infer that the assembly of the Milky Way disk may have experienced at least two distinct phases. The earlier phase is probably related to a slow, pressure-supported collapse of gas, when the gas settles down to the disk mainly in the vertical direction. In the later phase, there are significant radial flows of gas in the dis展开更多
We reconstruct the rotation curve of the Milky Way using the new trigono-metric parallax and proper motion data for masers in 43 high-mass star-forming re-gions obtained by VLBI, as well as the existing data from the ...We reconstruct the rotation curve of the Milky Way using the new trigono-metric parallax and proper motion data for masers in 43 high-mass star-forming re-gions obtained by VLBI, as well as the existing data from the literature, based on a new set of galactic constants (R0, -0) = (8.4 kpc, 254 km s^-1) measured by Reid et al. The revised rotation curve of the Milky Way is almost fiat or slightly rising in the region from about 6 to 15 kpc. The rotation velocities within 5 kpc of the Galactic center, as determined by VLBI, differ from those obtained by measurement of the HI-and CO-line tangent velocities. We fitted the revised rotation curve arising from three mass components: the bulge, disk and dark matter halo. The total mass of the Milky Way is found to be 2.3× 10^11 M⊙ (20 kpc). This is about 10% larger than that from Sofue et al, and is comparable with the mass of M31, 3.4× 10^11 M⊙ (35 kpc), given by Carignan et al. The limited accurate observational data, especially the VLBI data, do not permit a fully satisfactory fit to the rotation curve. The extensive par-allax and proper motion data that will be produced by the Bar and Spiral Structure Legacy Survey project in the next few years should lead to considerable progress in understanding the rotation curve and dark matter halo of the Milky Way.展开更多
文摘New solutions, for the stationary and temporary states, are derived for the 1D diffusion of cosmic rays in the presence of losses. The new results are applied to the latitude profile of radiation emitted above the galactic plane. Percolation theory for a spiral galaxy coupled with the evolution of the super-bubbles allows building a model for the radiation of a spiral galaxy as seen face on. The annulus of radiation of our galaxy is also simulated and the excess of radiation observed at the centre of our galaxy is explained by the sine law which arises in the theory of the image.
基金supported by the National Natural Science Foundation of China(NSFC,grant Nos.12173013,12103062,12003045,and 11903012)the National Key Basic R&D Program of China via 2019YFA0405500+2 种基金supported by the Natural Science Foundation of Hebei Province under grant A2021205006 and A2019205166by the project of the Hebei provincial department of science and technology under grant number 226Z7604Gthe science research grants from the China Manned Space Project。
文摘Using 9943 OB-type stars from LAMOST DR7 in the solar neighborhood,we fit the vertical stellar density profile with the model including a single exponential distribution at different positions(R,Φ).The distributions of the scale heights and scale length show that the young disk traced by the OB-type stars is not axisymmetric.The scale length decreases versus the azimuthal angleΦ,i.e.,from.■kpc withΦ=-3°to■kpc withΦ=9°.Meanwhile we find signal of non-symmetry in the distribution of the scale height of the north and south of the disk plane.The scale height in the north side shows signal of flaring of the disk,while that of the south disk stays almost constant around h_(s)=130 pc.The distribution of the displaceeent of the disk plane Z_(0)also shows variance versus the azimuthal angleΦ,which displays significant differences with the warp model constrained by the Cepheid stars.We also test different values for the position of the Sun,and the distance between the Sun and the Galactic center affects the scale heights and the displacement of the disk significantly,but that does not change our conclusion that the disk is not axisymmetric.
基金supported by the National Natural Science Foundation of China (grantNos. 10333050 and 10673005).
文摘With the new Hipparcos data recently released, we reexamine the kinematics in the solar neighborhood. Two different populations of objects, namely the thin-disk O-B5 stars and the thick-disk K-M giants, are selected for tracing the kinematical parameters of the Galaxy. Using a 3-D kinematical model, the components of the solar motion and the Oort constants are derived. The solutions and the kinematics inferred from both types of stars are analyzed. The results obtained with the new data are compared with those from the old Hipparcos data. We conclude that the present solution provides a more reliable estimation of the Oort constants, thanks to the new reduction of the Hipparcos data that provides even more accurate astrometric measurements of stars.
文摘We model the conservation of energy in the framework of the thin layer approximation for two types of interstellar medium (ISM). In particular, we analyse an ISM in the presence of self-gravity and a Gaussian ISM which produces an asymmetry in the advancing shell. The astrophysical targets to be simulated are the Fermi bubbles, the local bubble, and the W4 super-bubble. The theory of images is applied to a piriform curve, which allows deriving some analytical formulae for the observed intensity in the case of an optically thin medium.
文摘The shape of the local bubble is modeled in the framework of the thin layer approximation. The asymmetric shape of the local bubble is simulated by introducing axial profiles for the density of the interstellar medium, such as exponential, Gaussian, inverse square dependence and Navarro-Frenk-White. The availability of some observed asymmetric profiles for the local bubble allows us to match theory and observations via the observational percentage of reliability. The model is compatible with the presence of radioisotopes on Earth.
基金the National Key Research and Development Program of China(No.2017YFA0402701)the National Natural Science Foundation of China(Grant Nos.11988101,11933011,11833009)support from the Youth Innovation Promotion Association,CAS。
文摘The age pattern across spiral arms is one of the key observational features utilised to study the dynamic nature of the Galaxy’s spiral structure.With the most updated samples of high-mass star formation region(HMSFR)masers,O stars and open clusters,we investigated their distributions and kinematic properties in the vicinity of the Sun.We found that the Sagittarius-Carina Arm traced by HMSFRs,O stars((?)10 Myr)and young open clusters(<30 Myr)seem to deviate gradually towards the Galactic Anticenter(GAC)direction.The Local Arm traced by HMSFRs,O stars,young clusters and also mediumyoung clusters(30-100 Myr)are inclined to gradually deviate toward the Galactic Center(GC)direction.The properties for the Local Arm are supported by a simplified simulation of cluster motions in the Galaxy.Indications of systematic motions in the circular and radial velocities are noticed for the old open clusters(>200 Myr).These results are consistent with the idea that star formation can be triggered by spiral shocks of density waves,and indicate that the corotation radius of the Galaxy is located between the SagittariusCarina Arm and the Local Arm,close to the Solar circle.
基金supported by the National Natural Science Foundation of China(Nos.11988101,11625313,11890694,11973048 and 11927804)the 2-m Chinese Space Survey Telescope project and the National Key R&D Program of China(No.2019YFA0405502)+2 种基金supported by the Astronomical Big Data Joint Research Center,co-founded by the National Astronomical Observatories,Chinese Academy of Sciences and the Alibaba CloudThe Guo Shou Jing Telescope(the Large Sky Area Multi-Object Fiber Spectroscopic Telescope LAMOST)is a National Major Scientific Project built by the Chinese Academy of Sciencesprovided by the National Development and Reform Commission。
文摘We report the detection of a large sample of high-α-metal-rich stars on the low giant branch with 2.6<log g<3.3 dex in the LAMOST-MRS survey.This special group corresponds to an intermediate-age population of 5-9 Gyr based on the[Fe/H]-[C/N]diagram and age-[C/N]calibration.A comparison group is selected to have a solarαratio at super metallicity,which is young and has a narrow age range around 3 Gyr.Both groups have thin-disk like kinematics but the former shows slightly large velocity dispersions.The special group shows a larger extension in a vertical distance toward 1.2 kpc,a second peak at smaller Galactic radius and a larger fraction of super metal rich stars with[Fe/H]>0.2 than the comparison group.These properties strongly indicate its connection with the outer bar/bulge region at R=3-5 kpc.A tentative interpretation of this special group is that its stars were formed in the X-shaped bar/bulge region,close to its corotation radius,where radial migration is the most intense,and brings them to present locations at 9 kpc and beyond.Low eccentricities and slightly outward radial excursions of its stars are consistent with this scenario.Its kinematics(cold)and chemistry([α/Fe]~0.1)further support the formation of the instability-driven X-shaped bar/bulge from the thin disk.
基金supported in part by the Ministry of Education and Science(the basic part of the State assignment RK No.AAAA-A17-117030310283-7)Act No.211 of the Government of the Russian Federation(No.02.A03.21.0006)。
文摘The problem of the chemical composition gradient in the Galactic disk is studied based on a sample of metallicity estimates of open star clusters,using Gaia DR2-improved distance estimates.A clearly non-monotonic variation was observed in the average metallicity of clusters with increasing Galactocentric distance.One can clearly see the metallicity jump of 0.22 in[Fe/H]at a Galactocentric distance of about9.5 kpc,which appears to be linked to the outer boundary of the thinnest and youngest component of the Galactic disk.The absence of a significant metallicity gradient in the internal(R<9 kpc)and external(R>10 kpc)regions of the disk demonstrates the absence of noticeable metal enrichment at times of the order of the ages corresponding to those of the disk regions under consideration.Observational data show that the disk experiences noticeable metal enrichment only during the starburst epochs.No significant dependence was identified between the average metallicity and the age of the clusters.
基金supported by the National Natural Science Foundation of China(Grant Nos.12073051,12090040,12090041,11733006,11403061,11903048,U1631131,11973060,12090044,12073039,11633009,U1531118,11403037,11225316,11173030,11303038,Y613991N01,U1531245,11833006)the Key Laboratory of Optical Astronomy,National Astronomical Observatories,Chinese Academy of Sciences+4 种基金the Key Research Program of Frontier Sciences,CAS(Grant No.QYZDY-SSW-SLH007)the supports from the Science and Technology Development Fund,Macao SAR(file No.0007/2019/A)Faculty Research Grants of the Macao University of Science and Technology(No.FRG19-004-SSI)a National Major Scientific Project built by the Chinese Academy of SciencesFunding for the project has been provided by the National Development and Reform Commission。
文摘Since Sep.2018,LAMOST has started the medium-resolution(R~7500)spectral survey(MRS).We proposed the spectral survey of Galactic nebulae,including HⅡregions,HH objects,supernova remnants,planetary nebulae and the special stars with MRS(LAMOST MRS-N).LAMOST MRS-N covers about 1700 square degrees of the northern Galactic plane within 40°<l<215°and-5°<b<5°.In this 5-year survey,we plan to observe about 500 thousand nebulae spectra.According to the commissioning observations,the nebulae spectra can provide precise radial velocity with uncertainty less than 1 km s^(-1).These high-precision spectral data are of great significance to our understanding of star formation and evolution.
基金the National Natural Science Foundation of China (GrantNos. 10573022, 10973015 and 11061120454)that Heidi J. Newberg from RPI and her team PLUS (Participating LAMOST, US) have made substantial contributions in designing the survey under the support of the US National Science Foundation through grant AST-09-37523
文摘LAMOST (Large sky Area Multi-Object fiber Spectroscopic Telescope) is a Chinese national scientific research facility operated by National Astronomical Observatories, Chinese Academy of Sciences (NAOC). After two years of commis- sioning beginning in 2009, the telescope, instruments, software systems and opera- tions are nearly ready to begin the main science survey. Through a spectral survey of millions of objects in much of the northern sky, LAMOST will enable research in a number of contemporary cutting edge topics in astrophysics, such as discovery of the first generation stars in the Galaxy, pinning down the formation and evolution history of galaxies - especially the Milky Way and its central massive black hole, and look- ing for signatures of the distribution of dark matter and possible sub-structures in the Milky Way halo. To maximize the scientific potential of the facility, wide national par- ticipation and international collaboration have been emphasized. The survey has two major components: the LAMOST ExtraGAlactic Survey (LEGAS) and the LAMOST Experiment for Galactic Understanding and Exploration (LEGUE). Until LAMOST reaches its full capability, the LEGUE portion of the survey will use the available ob- serving time, starting in 2012. An overview of the LAMOST project and the survey that will be carried out in the next five to six years is presented in this paper. The sci- ence plan for the whole LEGUE survey, instrumental specifications, site conditions, and the descriptions of the current on-going pilot survey, including its footprints and target selection algorithm, will be presented as separate papers in this volume.
基金partially supported by the National Natural Science Foundation of China (Grant Nos. 10573022, 10973015, 11061120454and 11243003)the US National Science Foundation through grant AST-09-37523
文摘We describe the current plans for a spectroscopic survey of millions of stars in the Milky Way galaxy using the Guo Shou Jing Telescope (GSJT, formerly calledthe Large sky Area Multi-Object fiber Spectroscopic Telescope -- LAMOST). The survey will obtain spectra for 2.5 million stars brighter than r 〈 19 during dark/grey time, and 5 million stars brighter than r 〈 17 or J 〈 16 on nights that are moonlit or have low transparency. The survey will begin in the fall of 2012, and will run for at least four years. The telescope's design constrains the optimal declination range for observations to 10~ 〈 di 〈 50~, and site conditions lead to an emphasis on stars in the direction of the Galactic anticenter. The survey is divided into three parts with different target selection strategies: disk, anticenter, and spheroid. The resulting dataset will be used to study the merger history of the Milky Way, the substructure and evolution of the disks, the nature of the first generation of stars through identification of the lowest metallicity stars, and star formation through study of open clusters and OB associations. Detailed design of the LAMOST Experiment for Galactic Understanding and Exploration (LEGUE) survey will be completed in summer 2012, after a review of the results of the pilot survey.
基金supported by the National Key Basic Research Program of China (2014CB845700)
文摘We report a detailed investigation of the bulk motions of the nearby Galactic stellar disk, based on three samples selected from the LSS-GAC DR2: a global sample containing 0.57 million FGK dwarfs out to ~2 kpc, a local subset of the global sample consisting of ~5400 stars within 150 pc, and an anti-center sample containing ~4400AFGK dwarfs and red clump stars within windows a few degrees wide centered on the Galactic Anti-center. The global sample is used to construct a three-dimensional map of bulk motions of the Galactic disk from the solar vicinity out to ~2 kpc with a spatial resolution of ~250 pc. Typical values of the radial and vertical components of bulk motion range from-15 km s-1to 15 km s-1; in contrast, the lag behind the circular motion dominates the azimuthal component by up to ~15 km s-1. The map reveals spatially coherent, kpc-scale stellar flows in the disk, with typical velocities of a few tens of km s-1. Bending- and breathing-mode perturbations are clearly visible,and vary smoothly across the disk plane. Our data also reveal higher-order perturbations, such as breaks and ripples, in the profiles of vertical motion versus height. From the local sample, we find that stars from different populations exhibit very different patterns of bulk motion. Finally, the anti-center sample reveals a number of peaks in stellar number density in the line-of-sight velocity versus distance distribution, with the nearer ones apparently related to the known moving groups. The "velocity bifurcation" reported by Liu et al. at Galactocentric radii 10–11 kpc is confirmed. However,just beyond this distance, our data also reveal a new triple-peaked structure.
基金supported by the National Key Basic Research Program of China (2014CB845700)the National Natural Science Foundation of China (Grant No. 11473001)
文摘Using a sample of over 70 000 red clump(RC) stars with 5%–10% distance accuracy selected from the LAMOST Spectroscopic Survey of the Galactic Anti-center(LSS-GAC), we study the radial and vertical gradients of the Galactic disk(s) mainly in the anti-center direction, covering a significant volume of the disk in the range of projected Galactocentric radius 7 ≤ RGC ≤ 14 kpc and height from the Galactic midplane 0 ≤ |Z | ≤ 3 kpc. Our analysis shows that both the radial and vertical metallicity gradients are negative across much of the volume of the disk that is probed, and they exhibit significant spatial variations. Near the solar circle(7 ≤ RGC ≤ 11.5 kpc), the radial gradient has a moderately steep, negative slope of-0.08 dex kpc-1near the midplane(|Z | 〈 0.1 kpc), and the slope flattens with increasing |Z |. In the outer disk(11.5 〈 RGC ≤ 14 kpc), the radial gradients have an essentially constant, much less steep slope of-0.01 dex kpc-1at all heights above the plane, suggesting that the outer disk may have experienced an evolutionary path different from that of the inner disk. The vertical gradients are found to flatten largely with increasing RGC. However, the vertical gradient of the lower disk(0 ≤ |Z | ≤ 1 kpc)is found to flatten with RGC quicker than that of the upper disk(1 〈 |Z | ≤ 3 kpc).Our results should provide strong constraints on the theory of disk formation and evolution, as well as the underlying physical processes that shape the disk(e.g. gas flows,radial migration, and internal and external perturbations).
基金supported by the National Key Basic Research Program of China (2014CB845700)supported by the National Natural Science Foundation of China (Grant No.11473001)B.Q.C acknowledges partial funding from the China Postdoctoral Science Foundation (2014M560843)
文摘Accurate measurements of stellar metallicity gradients in the radial and vertical directions of the disk and their temporal variations provide important constraints on the formation and evolution of the Milky Way disk. We use 297 042 main sequence turn-off stars selected from the LAMOST Spectroscopic Survey of the Galactic Anticenter(LSS-GAC) to determine the radial and vertical gradients of stellar metallicity,△[Fe/H]/△R and △[Fe/H]/△|Z | of the Milky Way disk in the direction of the anticenter. We determine ages of those turn-off stars by isochrone fitting and measure the temporal variations of metallicity gradients. We have carried out a detailed analysis of the selection effects resulting from the selection, observation and data reduction of LSS-GAC targets and the potential biases of a magnitude limited sample on the determinations of metallicity gradients. Our results show that the gradients, both in the radial and vertical directions, exhibit significant spatial and temporal variations. The radial gradients yielded by stars with the oldest ages( 11 Gyr) are essentially zero at all heights from the disk midplane, while those given by younger stars are always negative. The vertical gradients deduced from stars with the oldest ages( 11 Gyr)are negative and only show very weak variations with Galactocentric distance in the disk plane, R, while those yielded by younger stars show strong variations with R.After being essentially flat at the earliest epochs of disk formation, the radial gradients steepen as age decreases, reaching a maximum(steepest) at age 7–8 Gyr, and then they flatten again. Similar temporal trends are also found for the vertical gradients. We infer that the assembly of the Milky Way disk may have experienced at least two distinct phases. The earlier phase is probably related to a slow, pressure-supported collapse of gas, when the gas settles down to the disk mainly in the vertical direction. In the later phase, there are significant radial flows of gas in the dis
基金Supported by the National Natural Science Foundation of China(Grant Nos.11133008 and J1210039)
文摘We reconstruct the rotation curve of the Milky Way using the new trigono-metric parallax and proper motion data for masers in 43 high-mass star-forming re-gions obtained by VLBI, as well as the existing data from the literature, based on a new set of galactic constants (R0, -0) = (8.4 kpc, 254 km s^-1) measured by Reid et al. The revised rotation curve of the Milky Way is almost fiat or slightly rising in the region from about 6 to 15 kpc. The rotation velocities within 5 kpc of the Galactic center, as determined by VLBI, differ from those obtained by measurement of the HI-and CO-line tangent velocities. We fitted the revised rotation curve arising from three mass components: the bulge, disk and dark matter halo. The total mass of the Milky Way is found to be 2.3× 10^11 M⊙ (20 kpc). This is about 10% larger than that from Sofue et al, and is comparable with the mass of M31, 3.4× 10^11 M⊙ (35 kpc), given by Carignan et al. The limited accurate observational data, especially the VLBI data, do not permit a fully satisfactory fit to the rotation curve. The extensive par-allax and proper motion data that will be produced by the Bar and Spiral Structure Legacy Survey project in the next few years should lead to considerable progress in understanding the rotation curve and dark matter halo of the Milky Way.