An s-domain analysis of the full dynamics of the pole-zero pair (frequency doublet) associated with the broadly used CMOS active-cascode gain-enhancement technique is presented. Quantitative results show that three sc...An s-domain analysis of the full dynamics of the pole-zero pair (frequency doublet) associated with the broadly used CMOS active-cascode gain-enhancement technique is presented. Quantitative results show that three scenarios can arise for the settling behavior of a closed-loop active-cascode operational amplifier depending on the relative locations of the unity-gain frequencies of the auxiliary and the main amplifiers. The analysis also reveals that, although theoretically possible, it is practically difficult to achieve an exact pole-zero cancellation. The analytical results presented here provide theoretical guidelines to the design of CMOS operational amplifiers using this technique.展开更多
文摘An s-domain analysis of the full dynamics of the pole-zero pair (frequency doublet) associated with the broadly used CMOS active-cascode gain-enhancement technique is presented. Quantitative results show that three scenarios can arise for the settling behavior of a closed-loop active-cascode operational amplifier depending on the relative locations of the unity-gain frequencies of the auxiliary and the main amplifiers. The analysis also reveals that, although theoretically possible, it is practically difficult to achieve an exact pole-zero cancellation. The analytical results presented here provide theoretical guidelines to the design of CMOS operational amplifiers using this technique.
文摘介绍了一种全差分增益增强CMOS运算放大器的设计和实现。该放大器用于12位20 MHz采样频率的流水线模/数转换器(A/D)的采样保持电路。为了实现大的输入共模范围,采用折叠式共源共栅放大器。主放大器采用开关电容共模反馈电路,辅助放大器则采用简单的连续时间共模反馈电路。该放大器采用CMOS 0.5μm工艺,电源电压为3.3 V。Cadence Spectre仿真结果显示,在负载为6 p F的情况下,其增益为99 d B,单位增益带宽为318 MHz,相位裕度为53°。