The Xiangshan mafic-ultramafic complex is one of the major Early Permian maficultramafic intrusions in eastern Tianshan (Xinjiang, NW China), and consists of two major intrusive phases. The first intrusive phase is ...The Xiangshan mafic-ultramafic complex is one of the major Early Permian maficultramafic intrusions in eastern Tianshan (Xinjiang, NW China), and consists of two major intrusive phases. The first intrusive phase is mainly gabbroic rocks hosting ilmenite mineralization, while the second intrusive phase is mainly lherzoilite associated with Ni-Cu sulfide mineralization. The Xiangshan ilmenite orebodies hosted in the Fe-Ti oxide-bearing gabbro occur along the contact between hornblende gabbros and leucogabbros. The hornblende gabbros and Fe-Ti oxide rich gabbros at Xiangshan are newly dated to be Early Permian (280.1 and 279.2 Ma, respectively). Major and trace element compositions of zircons and whole rocks from Xiangshan hornblende gabbro and Fe-Ti oxide gabbro have been measured by in situ excimer laser ablation ICP-MS. Zircon Ce^4+/Ce^3+ ratios based on lattice-strain model and Ti-in-zircon temperatures of hornblende gabbro and Fe-Ti oxide gabbro of the Xiangshan complex are calculated to evaluate the physicochemical variations during the ilmenite mineralization. Whole-rock geochemistry and zircon trace element geochemistry suggest that Fe-Ti oxide gabbros were formed from a basaltic parent magma which had undergone a transfromation from being H2O-rich to H2O-poor. During the magmatic evolution, primitive, HEO-poor basaltic melts may have been replenished into the system, increasing its solidus temperature and decreasing its oxygen fugacity and H2O contents. This may have supperessed the Ti-rich poikilitic hornblende fractionation and promoted the plagioclase fractionation, which consequently concentrated the ore-forming components in the residual melts and generated the ilmenite mineralization.展开更多
Diverse models have been proposed for the role of the Tarim Craton within the Paleoproterozoic Columbia supercontinent assembly. Here we report a suite of-1.71 Ga Nb-enriched meta-gabbro lenses in the eastern Quanji M...Diverse models have been proposed for the role of the Tarim Craton within the Paleoproterozoic Columbia supercontinent assembly. Here we report a suite of-1.71 Ga Nb-enriched meta-gabbro lenses in the eastern Quanji Massif, within the Tarim Craton in NW China. The meta-gabbroic rocks have Nb contents of 11.5-16.4 ppm with Nb/La ratios varying from 0.84 to 1.02((Nb/La)_N = 0.81-0.98) and Nb/U ratios from 38.0 to 47.2. They show low SiO_2(45.1-48.5 wt.%) and MgO(5.96-6.81 wt.%) and Mg#(Mg# = Mg/(Mg + Fe) = 43.5-47.7), high FeO^t(13.0-15.7 wt.%) and moderate Ti02(1.70-2.51 wt.%).with tholeiitic affinities. These rocks possess low fractionated REE patterns without obvious Eu anomalies(Eu/Eu~* = 0.87-1.02). Their primitive mantle-normalized elements patterns display significant Zr-Hf troughs, positive Nb anomalies, weak negative Ti and P anomalies, and high contents of Rb and Ba,resembling Nb-enriched basalts generated in arc-related tectonic settings. Their arc-like geochemical signatures together with whole rock εNd(t) values of 0.4-2.1 and corresponding old T_(DM)(2.22-2.37 Ga)as well as(^(143)Nd/^(144)Nd)_t and(^(87)Sr/^(86)Sr)t(t = 1712 Ma) values of 0.5104-0.5105 and 0.7030-0.7058,respectively, suggest that their precursor magma originated from mantle wedge peridotite metasomatised by subduction-derived melts. The results from our study reveal subduction along the eastern periphery of the Tarim Craton and marginal outgrowth continuing to ~1.7 Ga within the Columbia supercontinent.展开更多
The early Paleozoic tectonic evolution of the Xing'an-Mongolian Orogenic Belt is dominated by two oceanic basins on the northwestern and southeastern sides of the Xing'an Block,i.e.,the Xinlin-Xiguitu Ocean an...The early Paleozoic tectonic evolution of the Xing'an-Mongolian Orogenic Belt is dominated by two oceanic basins on the northwestern and southeastern sides of the Xing'an Block,i.e.,the Xinlin-Xiguitu Ocean and the Nenjiang Ocean.However,the early development of the Nenjiang Ocean remains unclear.Here,we present zircon U-Pb geochronology and whole-rock elemental and Sr-Nd isotopic data on the gabbros in the Xinglong area together with andesitic tuffs and basalts in the Duobaoshan area.LA-ICP-MS zircon U-Pb dating of gabbros and andesitic tuffs yielded crystallization ages of 443-436 Ma and 452-451 Ma,respectively.The Early Silurian Xinglong gabbros show calc-alkaline and E-MORB affinities but they are enriched in LILEs,and depleted in HFSEs,with relatively low U/Th ratios of 0.18-0.36 andεNd(t)values of-1.6 to+0.5.These geochemical features suggest that the gabbros might originate from a mantle wedge modified by pelagic sediment-derived melts,consistent with a back-arc basin setting.By contrast,the andesitic tuffs are characterized by high MgO(>5 wt.%),Cr(138-200 ppm),and Ni(65-110 ppm)contents,and can be termed as high-Mg andesites.Their low Sr/Y ratios of 15.98-17.15 and U/Th values of 0.24-0.25 and moderate(La/Sm)_n values of 3.07-3.26 are similar to those from the Setouchi Volcanic Belt(SW Japan),and are thought to be derived from partial melting of subducted sediments,and subsequent melt-mantle interaction.The Duobaoshan basalts have high Nb(8.44-10.30 ppm)and TiO2 contents(1.17-1.60 wt.%),typical of Nb-enriched basalts.They are slightly younger than regional adakitic rocks and have positiveεNd(t)values of+5.2 to+5.7 and are interpreted to be generated by partial melting of a depleted mantle source metasomatized by earlier adakitic melts.Synthesized with coeval arc-related igneous rocks from the southeastern Xing'an Block,we propose that the Duobaoshan high-Mg andesitic tuffs and Nbenriched basalts are parts of the Late Ordovician and Silurian Sonid Zuoqi-Duobaoshan arc belt,and they were formed by the nor展开更多
The Yesilova ophiolite located in the Alpine zone. This work deals with differentiation mechanism of ultramafic cumulate in ophiolite. Generally, the sequence consists of gabbro and plagiogranite. The petrographic and...The Yesilova ophiolite located in the Alpine zone. This work deals with differentiation mechanism of ultramafic cumulate in ophiolite. Generally, the sequence consists of gabbro and plagiogranite. The petrographic and petrolgichal properties of it show that the layering in gabbros are products of a differentiation by fractional crystallization insitu. Because it has ferrous compounds (magnetite, hematite) by means of volatiles (H2O, CO2) that evidence magma at high temperatures (〉700 ℃). Ferrous liquids are compatible with fractional crystallization through olivine, plagioclase, clinopyroxene removal; whereas the evolved gabbros represent clinopyroxene, plagioclase cumulates from ferrous liquids with little amounts of trapped melt. Furthermore, cathodo luminesans image of zircons shows chemichal characteristic of oceanic plagiogranit (such as Fe2O3/MgO, Rb, Sr, Zr, TiO2) that these characters can be explained by fractional crystallization processes in the late stage of magma generation. Furthermore, all plagiogranites have small positive Eu anomalies indicating the significant role of plagioclase in the fractional crystallization. So, the Yesilova ophiolite ultramafic cumulates are the most probably related to crystal-liquid fractionation process of the oceanic crust of the Alpine belt. The plagiogranite is differentiation products of crystal-liquid insitu ofa mafic magma in the magma chamber.展开更多
基金financially supported by the National Natural Science Foundation of China(No.41372102)the National Basic Research Program of China(No.2014CB440803)the China Geological Survey(No.DD20160071)
文摘The Xiangshan mafic-ultramafic complex is one of the major Early Permian maficultramafic intrusions in eastern Tianshan (Xinjiang, NW China), and consists of two major intrusive phases. The first intrusive phase is mainly gabbroic rocks hosting ilmenite mineralization, while the second intrusive phase is mainly lherzoilite associated with Ni-Cu sulfide mineralization. The Xiangshan ilmenite orebodies hosted in the Fe-Ti oxide-bearing gabbro occur along the contact between hornblende gabbros and leucogabbros. The hornblende gabbros and Fe-Ti oxide rich gabbros at Xiangshan are newly dated to be Early Permian (280.1 and 279.2 Ma, respectively). Major and trace element compositions of zircons and whole rocks from Xiangshan hornblende gabbro and Fe-Ti oxide gabbro have been measured by in situ excimer laser ablation ICP-MS. Zircon Ce^4+/Ce^3+ ratios based on lattice-strain model and Ti-in-zircon temperatures of hornblende gabbro and Fe-Ti oxide gabbro of the Xiangshan complex are calculated to evaluate the physicochemical variations during the ilmenite mineralization. Whole-rock geochemistry and zircon trace element geochemistry suggest that Fe-Ti oxide gabbros were formed from a basaltic parent magma which had undergone a transfromation from being H2O-rich to H2O-poor. During the magmatic evolution, primitive, HEO-poor basaltic melts may have been replenished into the system, increasing its solidus temperature and decreasing its oxygen fugacity and H2O contents. This may have supperessed the Ti-rich poikilitic hornblende fractionation and promoted the plagioclase fractionation, which consequently concentrated the ore-forming components in the residual melts and generated the ilmenite mineralization.
基金supported by the National Science Foundation of ChinaNSFC grants(Grant Nos.41602056,41372075,41172069)+1 种基金the China Postdoctoral Science Foundation(Grant No.2016M590729)the Fundamental Research Funds for National Universities,China University of Geosciences(Wuhan)(Grant No.CUG160846)
文摘Diverse models have been proposed for the role of the Tarim Craton within the Paleoproterozoic Columbia supercontinent assembly. Here we report a suite of-1.71 Ga Nb-enriched meta-gabbro lenses in the eastern Quanji Massif, within the Tarim Craton in NW China. The meta-gabbroic rocks have Nb contents of 11.5-16.4 ppm with Nb/La ratios varying from 0.84 to 1.02((Nb/La)_N = 0.81-0.98) and Nb/U ratios from 38.0 to 47.2. They show low SiO_2(45.1-48.5 wt.%) and MgO(5.96-6.81 wt.%) and Mg#(Mg# = Mg/(Mg + Fe) = 43.5-47.7), high FeO^t(13.0-15.7 wt.%) and moderate Ti02(1.70-2.51 wt.%).with tholeiitic affinities. These rocks possess low fractionated REE patterns without obvious Eu anomalies(Eu/Eu~* = 0.87-1.02). Their primitive mantle-normalized elements patterns display significant Zr-Hf troughs, positive Nb anomalies, weak negative Ti and P anomalies, and high contents of Rb and Ba,resembling Nb-enriched basalts generated in arc-related tectonic settings. Their arc-like geochemical signatures together with whole rock εNd(t) values of 0.4-2.1 and corresponding old T_(DM)(2.22-2.37 Ga)as well as(^(143)Nd/^(144)Nd)_t and(^(87)Sr/^(86)Sr)t(t = 1712 Ma) values of 0.5104-0.5105 and 0.7030-0.7058,respectively, suggest that their precursor magma originated from mantle wedge peridotite metasomatised by subduction-derived melts. The results from our study reveal subduction along the eastern periphery of the Tarim Craton and marginal outgrowth continuing to ~1.7 Ga within the Columbia supercontinent.
基金supported by National Natural Science Foundation of China(41802236)“the Fundamental Research Funds for the Central universities”(N170103013,N2001004 and N170104022)Opening Foundation of Key Laboratory of Mineral Resources Evaluation in Northeast Asia,Ministry of Natural Resources(DBY-KF-18-05)。
文摘The early Paleozoic tectonic evolution of the Xing'an-Mongolian Orogenic Belt is dominated by two oceanic basins on the northwestern and southeastern sides of the Xing'an Block,i.e.,the Xinlin-Xiguitu Ocean and the Nenjiang Ocean.However,the early development of the Nenjiang Ocean remains unclear.Here,we present zircon U-Pb geochronology and whole-rock elemental and Sr-Nd isotopic data on the gabbros in the Xinglong area together with andesitic tuffs and basalts in the Duobaoshan area.LA-ICP-MS zircon U-Pb dating of gabbros and andesitic tuffs yielded crystallization ages of 443-436 Ma and 452-451 Ma,respectively.The Early Silurian Xinglong gabbros show calc-alkaline and E-MORB affinities but they are enriched in LILEs,and depleted in HFSEs,with relatively low U/Th ratios of 0.18-0.36 andεNd(t)values of-1.6 to+0.5.These geochemical features suggest that the gabbros might originate from a mantle wedge modified by pelagic sediment-derived melts,consistent with a back-arc basin setting.By contrast,the andesitic tuffs are characterized by high MgO(>5 wt.%),Cr(138-200 ppm),and Ni(65-110 ppm)contents,and can be termed as high-Mg andesites.Their low Sr/Y ratios of 15.98-17.15 and U/Th values of 0.24-0.25 and moderate(La/Sm)_n values of 3.07-3.26 are similar to those from the Setouchi Volcanic Belt(SW Japan),and are thought to be derived from partial melting of subducted sediments,and subsequent melt-mantle interaction.The Duobaoshan basalts have high Nb(8.44-10.30 ppm)and TiO2 contents(1.17-1.60 wt.%),typical of Nb-enriched basalts.They are slightly younger than regional adakitic rocks and have positiveεNd(t)values of+5.2 to+5.7 and are interpreted to be generated by partial melting of a depleted mantle source metasomatized by earlier adakitic melts.Synthesized with coeval arc-related igneous rocks from the southeastern Xing'an Block,we propose that the Duobaoshan high-Mg andesitic tuffs and Nbenriched basalts are parts of the Late Ordovician and Silurian Sonid Zuoqi-Duobaoshan arc belt,and they were formed by the nor
文摘The Yesilova ophiolite located in the Alpine zone. This work deals with differentiation mechanism of ultramafic cumulate in ophiolite. Generally, the sequence consists of gabbro and plagiogranite. The petrographic and petrolgichal properties of it show that the layering in gabbros are products of a differentiation by fractional crystallization insitu. Because it has ferrous compounds (magnetite, hematite) by means of volatiles (H2O, CO2) that evidence magma at high temperatures (〉700 ℃). Ferrous liquids are compatible with fractional crystallization through olivine, plagioclase, clinopyroxene removal; whereas the evolved gabbros represent clinopyroxene, plagioclase cumulates from ferrous liquids with little amounts of trapped melt. Furthermore, cathodo luminesans image of zircons shows chemichal characteristic of oceanic plagiogranit (such as Fe2O3/MgO, Rb, Sr, Zr, TiO2) that these characters can be explained by fractional crystallization processes in the late stage of magma generation. Furthermore, all plagiogranites have small positive Eu anomalies indicating the significant role of plagioclase in the fractional crystallization. So, the Yesilova ophiolite ultramafic cumulates are the most probably related to crystal-liquid fractionation process of the oceanic crust of the Alpine belt. The plagiogranite is differentiation products of crystal-liquid insitu ofa mafic magma in the magma chamber.