期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
On the role of piezoelectricity in phonon properties and thermal conductivity of GaN nanofilms 被引量:3
1
作者 Linli Zhu Haonan Luo 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2016年第6期277-281,共5页
The effect of piezoelectricity on phonon properties and thermal conductivity of gallium nitride (GaN) nanofilms is theoretically investigated. The elasticity model is utilized to derive the phonon properties in spat... The effect of piezoelectricity on phonon properties and thermal conductivity of gallium nitride (GaN) nanofilms is theoretically investigated. The elasticity model is utilized to derive the phonon properties in spatially confined GaN nanofilms. The piezoelectric constitutive relation in GaN nanofilms is taken into account in calculating the phonon dispersion relation. The modified phonon group velocity and phonon density of state as well as the phonon thermal conductivity are also obtained due to the contribution of piezoelectricity. Theoretical results show that the piezoelectricity in GaN nanofilms can change significantly the phonon properties such as the phonon group velocity and density of states, resulting in the variation of the phonon thermal conductivity of GaN nanofilms remarkably. Moreover, the piezoelectricity of GaN can modify the dependence of thermal conductivity on the geometrical size and temperature. These results can be useful in modeling the thermal performance in the active region of GaN-based electronic devices. 展开更多
关键词 gan nanofilm Phonon properties Elastic model PIEZOELECTRICITY Phonon thermal conductivity
下载PDF
Effects of surface charges on phonon properties and thermal conductivity in GaN nanofilms 被引量:2
2
作者 Shu-Sen Yang Yang Hou Lin-Li Zhu 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第8期270-275,共6页
Surface charges can modify the elastic modulus of nanostructure,leading to the change of the phonon and thermal properties in semiconductor nanostructure.In this work,the influence of surface charges on the phonon pro... Surface charges can modify the elastic modulus of nanostructure,leading to the change of the phonon and thermal properties in semiconductor nanostructure.In this work,the influence of surface charges on the phonon properties and phonon thermal conductivity of GaN nanofilm are quantitatively investigated.In the framework of continuum mechanics,the modified elastic modulus can be derived for the nanofilm with surface charges.The elastic model is presented to analyze the phonon properties such as the phonon dispersion relation,phonon group velocity,density of states of phonons in nanofilm with the surface charges.The phonon thermal conductivity of nanofilm can be obtained by considering surface charges.The simulation results demonstrate that surface charges can significantly change the phonon properties and thermal conductivity in a GaN nanofilm.Positive surface charges reduce the phonon energy and phonon group velocity but increase the density of states of phonons.The surface charges can change the size and temperature dependence of phonon thermal conductivity of GaN nanofilm.Based on these theoretical results,one can adjust the phonon properties and temperature/size dependent thermal conductivity in GaN nanofilm by changing the surface charges. 展开更多
关键词 surface CHARGES gan nanofilm elastic model PHONON properties thermal CONDUCTIVITY
下载PDF
Influence of surface scattering on the thermal properties of spatially confined GaN nanofilm
3
作者 侯阳 朱林利 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第8期301-307,共7页
Gallium nitride(GaN), the notable representative of third generation semiconductors, has been widely applied to optoelectronic and microelectronic devices due to its excellent physical and chemical properties. In th... Gallium nitride(GaN), the notable representative of third generation semiconductors, has been widely applied to optoelectronic and microelectronic devices due to its excellent physical and chemical properties. In this paper, we investigate the surface scattering effect on the thermal properties of GaN nanofilms. The contribution of surface scattering to phonon transport is involved in solving a Boltzmann transport equation(BTE). The confined phonon properties of GaN nanofilms are calculated based on the elastic model. The theoretical results show that the surface scattering effect can modify the cross-plane phonon thermal conductivity of GaN nanostructures completely, resulting in the significant change of size effect on the conductivity in GaN nanofilm. Compared with the quantum confinement effect, the surface scattering leads to the order-of-magnitude reduction of the cross-plane thermal conductivity in GaN nanofilm. This work could be helpful for controlling the thermal properties of Ga N nanostructures in nanoelectronic devices through surface engineering. 展开更多
关键词 gan nanofilm elastic model quantum confinement Boltzmann transport equation size effect phonon thermal conductivity
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部