针对特征权重难以准确量化的问题,提出一种基于灰狼优化(grey wolf optimizer, GWO)算法和鸟群算法(bird swarm algorithm, BSA)的混合算法,用于特征权重的寻优。首先,将Chebyshev映射、反向学习与精英策略用于混合算法的初始种群生成;...针对特征权重难以准确量化的问题,提出一种基于灰狼优化(grey wolf optimizer, GWO)算法和鸟群算法(bird swarm algorithm, BSA)的混合算法,用于特征权重的寻优。首先,将Chebyshev映射、反向学习与精英策略用于混合算法的初始种群生成;其次,将改进后的GWO算法位置更新策略融入BSA的觅食行为中,得到一种新的局部搜索策略;然后,将BSA的警觉行为与飞行行为用作混合算法的全局搜索平衡策略,从而得到一种收敛的灰狼-鸟群算法(grey wolf and bird swarm algorithm, GWBSA),通过GWBSA的迭代寻优可获得各特征的权重值。利用标准测试函数和标准分类数据集进行了对比实验,与遗传算法、蚁狮算法等方法相比,GWBSA具有较快的收敛速度且不易陷入局部最优,可以提高模式分类问题的求解质量。展开更多
针对在阵列孔径、阵元数目、最小阵元间距等多约束条件下的稀布矩形平面阵列天线优化问题,提出了基于改进型灰狼优化(improved grey wolf optimizer,IGWO)算法和窗函数加权的稀布矩形平面阵列天线综合方法。首先,利用Tent混沌映射、非...针对在阵列孔径、阵元数目、最小阵元间距等多约束条件下的稀布矩形平面阵列天线优化问题,提出了基于改进型灰狼优化(improved grey wolf optimizer,IGWO)算法和窗函数加权的稀布矩形平面阵列天线综合方法。首先,利用Tent混沌映射、非线性收敛因子、优势狼动态置信策略和对立学习策略对灰狼优化(grey wolf optimizer,GWO)算法进行改进,增加算法的种群多样性和跳出局部最优的能力。然后,利用窗函数对阵列单元进行加权,生成位置分布矩阵,减少稀疏矩阵优化时间,提高优化效率。最后,利用位置分布矩阵生成稀疏阵列,再运用IGWO算法进行多约束条件的稀布优化。为验证所提方法的有效性进行了仿真实验,实验结果表明,本文方法可以有效提高阵列天线的性能,降低峰值旁瓣电平,对于解决在多约束条件下的阵列分布问题,具有一定的工程意义和参考价值。展开更多
灰狼优化(grey wolf optimization,GWO)算法是模拟灰狼的种群活动而提出的群智能算法,该算法因其在高维度的求解精度较高而受到广泛关注,但是它与其他群智能算法一样存在收敛慢和易陷入局部最优的缺点。针对GWO算法所存在的问题,文章基...灰狼优化(grey wolf optimization,GWO)算法是模拟灰狼的种群活动而提出的群智能算法,该算法因其在高维度的求解精度较高而受到广泛关注,但是它与其他群智能算法一样存在收敛慢和易陷入局部最优的缺点。针对GWO算法所存在的问题,文章基于非线性控制因子和遗传算法中的变异思想,提出了一种改进的基于非线性控制因子和遗传变异的GWO算法(grey wolf optimization algorithm based on the nonlinear control factor and genetic variation,NGGWO),并提出一种基于余弦变换的非线性收敛因子,用于平衡算法的全局与局部搜索能力;同时,在算法中引入遗传变异策略,用于解决算法陷入局部时的停滞现象;通过一组基准测试函数,将NGGWO与GWO和其改进算法进行比较。实验结果表明,NGGWO基本优于GWO算法,相比于该文提出的3种改进GWO算法,NGGWO也具有性能上的优势。展开更多
文摘针对特征权重难以准确量化的问题,提出一种基于灰狼优化(grey wolf optimizer, GWO)算法和鸟群算法(bird swarm algorithm, BSA)的混合算法,用于特征权重的寻优。首先,将Chebyshev映射、反向学习与精英策略用于混合算法的初始种群生成;其次,将改进后的GWO算法位置更新策略融入BSA的觅食行为中,得到一种新的局部搜索策略;然后,将BSA的警觉行为与飞行行为用作混合算法的全局搜索平衡策略,从而得到一种收敛的灰狼-鸟群算法(grey wolf and bird swarm algorithm, GWBSA),通过GWBSA的迭代寻优可获得各特征的权重值。利用标准测试函数和标准分类数据集进行了对比实验,与遗传算法、蚁狮算法等方法相比,GWBSA具有较快的收敛速度且不易陷入局部最优,可以提高模式分类问题的求解质量。
文摘针对在阵列孔径、阵元数目、最小阵元间距等多约束条件下的稀布矩形平面阵列天线优化问题,提出了基于改进型灰狼优化(improved grey wolf optimizer,IGWO)算法和窗函数加权的稀布矩形平面阵列天线综合方法。首先,利用Tent混沌映射、非线性收敛因子、优势狼动态置信策略和对立学习策略对灰狼优化(grey wolf optimizer,GWO)算法进行改进,增加算法的种群多样性和跳出局部最优的能力。然后,利用窗函数对阵列单元进行加权,生成位置分布矩阵,减少稀疏矩阵优化时间,提高优化效率。最后,利用位置分布矩阵生成稀疏阵列,再运用IGWO算法进行多约束条件的稀布优化。为验证所提方法的有效性进行了仿真实验,实验结果表明,本文方法可以有效提高阵列天线的性能,降低峰值旁瓣电平,对于解决在多约束条件下的阵列分布问题,具有一定的工程意义和参考价值。
文摘灰狼优化(grey wolf optimization,GWO)算法是模拟灰狼的种群活动而提出的群智能算法,该算法因其在高维度的求解精度较高而受到广泛关注,但是它与其他群智能算法一样存在收敛慢和易陷入局部最优的缺点。针对GWO算法所存在的问题,文章基于非线性控制因子和遗传算法中的变异思想,提出了一种改进的基于非线性控制因子和遗传变异的GWO算法(grey wolf optimization algorithm based on the nonlinear control factor and genetic variation,NGGWO),并提出一种基于余弦变换的非线性收敛因子,用于平衡算法的全局与局部搜索能力;同时,在算法中引入遗传变异策略,用于解决算法陷入局部时的停滞现象;通过一组基准测试函数,将NGGWO与GWO和其改进算法进行比较。实验结果表明,NGGWO基本优于GWO算法,相比于该文提出的3种改进GWO算法,NGGWO也具有性能上的优势。