期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于改进YOLOv5s的输电线路防外力破坏行为检测识别
被引量:
1
1
作者
郑良成
曹雪虹
+2 位作者
焦良葆
高阳
王彦生
《计算机测量与控制》
2024年第2期42-49,共8页
电力系统的安全对于整个能源传输过程至关重要;针对输电线路下超大工程车辆和烟火为主要的外力破坏行为,对单阶段目标检测算法YOLOv5s进行改进,首先针对输电线路多雨雾烟尘等工作环境,引入限制对比度自适应直方图均衡算法CLAHE对图片进...
电力系统的安全对于整个能源传输过程至关重要;针对输电线路下超大工程车辆和烟火为主要的外力破坏行为,对单阶段目标检测算法YOLOv5s进行改进,首先针对输电线路多雨雾烟尘等工作环境,引入限制对比度自适应直方图均衡算法CLAHE对图片进行去雾处理,提升图片对比度;针对检测目标距离较远的问题,在YOLOv5s网络的基础上添加CA注意力机制,提升了模型对目标的定位能力;将原网络中的最邻近差值采样方式替换为轻量级通用上采样算子CARAFE,更好地捕捉特征图的同时引入较小的参数量;最后在网络的特征融合层,使用具有通道混洗思想的GSConv卷积模块代替标准卷积模块,减少模型参数量,再利用slim_neck特征融合结构,强化目标关注度,达到减少模型参数量同时提升检测精度的效果;实验结果表明:改进后的YOLOv5s网络,mAP提升了4.4%,参数量减少了3.4%,权重模型内存减小了2.7%,证明了算法的有效性。
展开更多
关键词
目标检测
外力破坏
YOLOv5s
CA注意力
CARAFE
gsconv
_
slimneck
下载PDF
职称材料
题名
基于改进YOLOv5s的输电线路防外力破坏行为检测识别
被引量:
1
1
作者
郑良成
曹雪虹
焦良葆
高阳
王彦生
机构
南京工程学院人工智能产业技术研究院
江苏省智能感知技术与装备工程研究中心
出处
《计算机测量与控制》
2024年第2期42-49,共8页
基金
江苏省自然科学基金项目(BK20201042)
江苏省政策引导类计划项目(SZ-SQ2020007)。
文摘
电力系统的安全对于整个能源传输过程至关重要;针对输电线路下超大工程车辆和烟火为主要的外力破坏行为,对单阶段目标检测算法YOLOv5s进行改进,首先针对输电线路多雨雾烟尘等工作环境,引入限制对比度自适应直方图均衡算法CLAHE对图片进行去雾处理,提升图片对比度;针对检测目标距离较远的问题,在YOLOv5s网络的基础上添加CA注意力机制,提升了模型对目标的定位能力;将原网络中的最邻近差值采样方式替换为轻量级通用上采样算子CARAFE,更好地捕捉特征图的同时引入较小的参数量;最后在网络的特征融合层,使用具有通道混洗思想的GSConv卷积模块代替标准卷积模块,减少模型参数量,再利用slim_neck特征融合结构,强化目标关注度,达到减少模型参数量同时提升检测精度的效果;实验结果表明:改进后的YOLOv5s网络,mAP提升了4.4%,参数量减少了3.4%,权重模型内存减小了2.7%,证明了算法的有效性。
关键词
目标检测
外力破坏
YOLOv5s
CA注意力
CARAFE
gsconv
_
slimneck
Keywords
target detection
external force damage
YOLOv5s
CA attention
CARAFE
gsconv
_
slimneck
分类号
TP391.41 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于改进YOLOv5s的输电线路防外力破坏行为检测识别
郑良成
曹雪虹
焦良葆
高阳
王彦生
《计算机测量与控制》
2024
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部