期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于GRU循环神经网络的稠油油藏产量预测新方法 被引量:8
1
作者 梁潇 喻高明 +1 位作者 辛显康 刘晨 《西安石油大学学报(自然科学版)》 CAS 北大核心 2020年第3期54-59,共6页
油田产量精确预测对油田高效生产开发具有重要意义,而目前常用的DCA方法(PLE模型、SEPD模型、Arps模型)不能够充分挖掘数据前后关联,会导致预测出现偏差。为此,提出了一种基于门限递归单元循环神经网络模型(GRU-RNN模型)的预测底水稠油... 油田产量精确预测对油田高效生产开发具有重要意义,而目前常用的DCA方法(PLE模型、SEPD模型、Arps模型)不能够充分挖掘数据前后关联,会导致预测出现偏差。为此,提出了一种基于门限递归单元循环神经网络模型(GRU-RNN模型)的预测底水稠油油藏产量的新方法。GRU-RNN模型预测平均误差为3.03%,准确度高于DCA方法(PLE、SEPD、Arps模型的平均误差分别为29.51%、32.98%、38.76%)。该方法为油田产量预测提供了除经验公式及数值模型方法之外的新思路。 展开更多
关键词 产量预测 稠油油藏 神经网络 数值模拟 gru-rnn5模型
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部