The airborne gravimetry was an important leap and innovation in the world's history of geophysical exploration. China's first test of the airborne gravity geological survey in the onshoreoffshore transitional area o...The airborne gravimetry was an important leap and innovation in the world's history of geophysical exploration. China's first test of the airborne gravity geological survey in the onshoreoffshore transitional area of the western and southern part of the Bohai Sea was successful and effective in geology. Based on the airborne gravity data, and combining previous ground gravity, seismic and drilling data etc., we carried out the geological interpretation by forward and inverse methods. The result shows that the airborne Bouguer gravity anomaly was clear, the fracture interpretation was reliable, and the inversion depth of the main geological interfaces was relatively accurate. This airborne gravity geological survey not only filled the exploring gaps in the onshore- offshore transitional area, and realized the geological and tectonic junction between the sea and the land, but also discovered four local gravity anomalies, 11 fractures and three sags or subsags, and so on. The good geological effect of airborne gravimetry not restricted by terrain condition shows that it can be served as a new geophysical method in the exploration of complex terrain physiognomy area such as mountain, jungle, desert, marsh, onshore-offshore transitional area and so on, and has an extensive application prospect in China in the future.展开更多
China has developed an airborne gravimetry system based on SINS/DGPS named SGA-WZ, the first system in which a strap- down inertial navigation system (SINS) has been used for airborne gravimetry in China. This gravi...China has developed an airborne gravimetry system based on SINS/DGPS named SGA-WZ, the first system in which a strap- down inertial navigation system (SINS) has been used for airborne gravimetry in China. This gravity measurement system consists of a strap-down inertial navigation system and a differential global positioning system (DGPS). In April 2010, a flight test was carried out in Shandong Province of China to test the accuracy of this system. The test was designed to assess the re- peatability and accuracy of the system. Two repeated flights and six grid flights were made. The flying altitude was about 400 m. The average flying speed was about 60 m/s, which corresponds to a spatial resolution of 4.8 km when using 160-s cutoff low-pass filter. This paper describes the data processing of the system. The evaluation of the internal precision is based on repeated flights and differences in crossover points. Gravity results in this test from the repeated flight lines show that the re- peatability of the repeat lines is 1.6 mGal with a spatial resolution of 4.8 kin, and the internal precision of grid flight data is 3.2 mGal with a spatial resolution of 4.8 km. There are some systematic errors in the gravity results, which can be modeled using trigonometric function. After the systematic errors are compensated, the precision of grid flight data can be better than 1 mGal.展开更多
基金part of the National Important Special Project of Science and Technology of China(Grant No.GZH200200301)
文摘The airborne gravimetry was an important leap and innovation in the world's history of geophysical exploration. China's first test of the airborne gravity geological survey in the onshoreoffshore transitional area of the western and southern part of the Bohai Sea was successful and effective in geology. Based on the airborne gravity data, and combining previous ground gravity, seismic and drilling data etc., we carried out the geological interpretation by forward and inverse methods. The result shows that the airborne Bouguer gravity anomaly was clear, the fracture interpretation was reliable, and the inversion depth of the main geological interfaces was relatively accurate. This airborne gravity geological survey not only filled the exploring gaps in the onshore- offshore transitional area, and realized the geological and tectonic junction between the sea and the land, but also discovered four local gravity anomalies, 11 fractures and three sags or subsags, and so on. The good geological effect of airborne gravimetry not restricted by terrain condition shows that it can be served as a new geophysical method in the exploration of complex terrain physiognomy area such as mountain, jungle, desert, marsh, onshore-offshore transitional area and so on, and has an extensive application prospect in China in the future.
基金supported by the National High-Tech Research&Development Program of China(Grant No.2006AA06A202)the Youth Innovation Foundation of China Aero Geophysical Survey&Remote Sensing Center for Land and Resources(Grant No.2010YFL05)
文摘China has developed an airborne gravimetry system based on SINS/DGPS named SGA-WZ, the first system in which a strap- down inertial navigation system (SINS) has been used for airborne gravimetry in China. This gravity measurement system consists of a strap-down inertial navigation system and a differential global positioning system (DGPS). In April 2010, a flight test was carried out in Shandong Province of China to test the accuracy of this system. The test was designed to assess the re- peatability and accuracy of the system. Two repeated flights and six grid flights were made. The flying altitude was about 400 m. The average flying speed was about 60 m/s, which corresponds to a spatial resolution of 4.8 km when using 160-s cutoff low-pass filter. This paper describes the data processing of the system. The evaluation of the internal precision is based on repeated flights and differences in crossover points. Gravity results in this test from the repeated flight lines show that the re- peatability of the repeat lines is 1.6 mGal with a spatial resolution of 4.8 kin, and the internal precision of grid flight data is 3.2 mGal with a spatial resolution of 4.8 km. There are some systematic errors in the gravity results, which can be modeled using trigonometric function. After the systematic errors are compensated, the precision of grid flight data can be better than 1 mGal.